Advertisement

Russian Journal of Plant Physiology

, Volume 65, Issue 6, pp 916–925 | Cite as

Volatile Organic Compound Analysis of Host and Non-Host Poplars for Trypophloeus klimeschi (Coleoptera: Curculionidae: Ipinae)

  • G. Gao
  • L. Dai
  • J. Gao
  • J. Wang
  • H. Chen
Research Papers

Abstract

Trypophloeus klimeschi Eggers was first discovered in Xinjiang Province and had strong selection specificity for Populus alba var. pyramidalis Bunge. There was an outbreak of this beetle in the northwest shelter forest of China, resulting in significant economic losses and loss of ecological benefits. Based on a prior long-term field investigation, T. klimeschi had a different extent of injuries for different ages of P. alba var. pyramidalis and other Populus in the same area were not selected by T. klimeschi. To further explore the specificity volatile compounds, this study involved selecting host and non-host trees to analyse the volatile chemical profile of host and non-host poplars of T. klimeschi. The main volatile compounds of the host poplar P. alba var. pyramidalis for different physiological statuses and those of three other non-host poplars (P. alba L., P. tomentosa Carr., and P. dakuanensis Hsu) were analysed through solid-phase micro extraction (SPME) coupled with thermal desorption and gas chromatography-mass spectrometry (GC-MS). The major compound groups were aldehydes, esters, alcohols, ketones, phenols, terpenes and alkanes. Comparative analysis of the changes in the different physiological stages of P. alba var. pyramidalis and other non-host Populus volatile substances was conducted, and the results showed that 2-hydroxy-benzaldehyde, nonanal, decanal, 2-methyl-butanal, (Z)-3-hexen-1-ol benzoate, methyl benzoate, methyl salicylate, geraniol and salicyl alcohol might act as attractants for T. klimeschi, and 2-hexenal, hexanal, 2-cyclohexen-1-one, caryophyllene, eugenol, benzyl alcohol, and eucalyptol could be deterrents for T. klimeschi. These experiments may lead to the optimisation of a synthetic lure that may be used to detect and monitor T. klimeschi.

Keywords

Populus spp. Trypophloeus klimeschi volatile compounds attractants deterrents 

Abbreviations

SPME

solid phase micro extraction

GC-MS

gas chromatography-mass spectrometry

DBH

diameter at breast height

VOCs

volatile compounds

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11183_2018_7045_MOESM1_ESM.pdf (581 kb)
Volatile Organic Compound Analysis of Host and Non-host Poplars for Trypophloeus klimeschi (Coleoptera: Curculionidae: Ipinae)

References

  1. 1.
    Cao, Y., Luo, Z., Wang, S., and Zhang, P., Bionomics and control of Trypophloeus klimeschi, Entomol. Knowledge, 2004, vol. 41, pp. 36–38.Google Scholar
  2. 2.
    Clavijo, M.A., Irmisch, S., Reinecke, A., Boeckler, G.A., Veit, D., Reichelt, M., and Unsicker, S.B., Herbivoreinduced volatile emission in black poplar: regulation and role in attracting herbivore enemies, Plant Cell Environ., 2014, vol. 37, pp. 1909–1923.CrossRefGoogle Scholar
  3. 3.
    Jerkovic, I. and Mastelic, J., Volatile compounds from leaf-buds of Populus nigra L. (Salicaceae), Phytochemistry, 2003, vol. 63, pp. 109–113.CrossRefPubMedGoogle Scholar
  4. 4.
    Guo, X., Yuan, G., Jiang, J., Luo, M., and Ma, J., Chemical components of volatiles form withered black poplar leaves with different physiological age, Chin. J. Appl. Ecol., 2005, vol. 16: 1822.Google Scholar
  5. 5.
    Kessler, A. and Baldwin, I.T., Defensive function of herbivore-induced plant volatile emissions in nature, Science, 2001, vol. 291, pp. 2141–2144.CrossRefPubMedGoogle Scholar
  6. 6.
    Tansey, J.A., McClay, A.S., Cole, D.E., and Keddie, B.A., Evidence for the influence of conspecific chemical cues on Aphthona nigriscutis (Coleoptera: Chrysomelidae) behaviour and distribution, Biocontol, 2005, vol. 50, pp. 343–358.CrossRefGoogle Scholar
  7. 7.
    Heath, R.R., Landolt, P.J., Dueben, B., and Lenczewski, B., Identification of floral compounds of night-blooming jessamine attractive to cabbage looper moths, Environ. Entomol., 1992, vol. 21, pp. 854–859.CrossRefGoogle Scholar
  8. 8.
    Ling, N., Tang, J.G., Yin, Y.S., Zhang, F., An, Y.L., Jiangyin, E.E.I., and Jiangsu, E.E.I., Electroantennogram responses of Clostera anastomosis adults to plant volatile of Populus nigra, Jiangsu J. Agric. Sci., 2014, vol. 3, pp. 514–519.Google Scholar
  9. 9.
    Leal, W.S., Barbosa, R.M., Xu, W., Ishida, Y., Syed, Z., Latte, N., and Furtado, A., Reverse and conventional chemical ecology approaches for the development of oviposition attractants for Culex mosquitoes, PloS One, 2008, vol. 3, no. 8: e3045.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Arnaud, L., Lognay, G., Verscheure, M., Leenaers, L., Gaspar, C., and Haubruge, E., Is dimethyldecanal a common aggregation pheromone of Tribolium flour beetles? J. Chem. Ecol., 2002, vol. 28, pp. 523–532.CrossRefPubMedGoogle Scholar
  11. 11.
    Morawo, T. and Fadamiro, H., Identification of key plant-associated volatiles emitted by Heliothis virescens, larvae that attract the parasitoid, Microplitis croceipes: implications for parasitoid perception of odor blends, J. Chem. Ecol., 2016, vol. 42, pp. 1–10.CrossRefGoogle Scholar
  12. 12.
    Croft, K., Juttner, F., and Slusarenko, A.J., Volatile products of the lipoxygenase pathway evolved from Phaseolus vulgaris leaves inoculated with Pseudomonas syringae pv. phaseolicola, Plant Physiol., 1993, vol. 101, pp. 13–24.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Zhang, J., Tian, H., Sun, H., and Wang, X., Antifungal activity of trans-2-hexenal against Penicillium cyclopium by a membrane damage mechanism, J. Food Biochem., 2017, vol. 41, pp. 12–19.Google Scholar
  14. 14.
    Chen, Y., Analyzing blends of herbivore-induced volatile organic compounds with factor analysis: revisiting “cotton plant, Gossypium hirsutum L. defense in response to nitrogen fertilization,” J. Econ. Entomol., 2013, vol. 106, pp. 1053–1057.CrossRefPubMedGoogle Scholar
  15. 15.
    Prokopy, R.J., Hu, X., Jang, E.B., Vargas, R.I., and Warthen, J.D., Attraction of mature Ceratitis capitata, females to 2-heptanone, a component of coffee fruit odor, J. Chem. Ecol., 1998, vol. 24, pp. 1293–1304.CrossRefGoogle Scholar
  16. 16.
    Dudareva, N., Murfitt, L.M., Mann, C.J., Gorenstein, N., Kolosova, N., Kish, C.M., and Wood, K., Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers, Plant Cell, 2000, vol. 12, pp. 949–961.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Deng, S.S., Yi, J., Cao, Y.Z., Luo, Z.X., Wang, W., and Li, K.B., Electroantennographic and behavioral responses of Holotrichia oblita to plant volatiles, Plant Prot., 2011, vol. 37, pp. 62–66.Google Scholar
  18. 18.
    Boch, R. and Shearer, D.A., Identification of geraniol as the active component in the Nassanoff pheromone of the honey bee, Nature, 1962, vol. 194, pp. 704–706.CrossRefGoogle Scholar
  19. 19.
    Chinta, S., Dickens, J.C., and Aldrich, J.R., Olfactory reception of potential pheromones and plant odors by tarnished plant bug, Lygus lineolaris (Hemiptera: Miridae), J. Chem. Ecol., 1994, vol. 20, pp. 3251–3267.CrossRefPubMedGoogle Scholar
  20. 20.
    Prates, H.T., Santos, J.P., Waquil, J.M., Fabris, J.D., Oliveira, A.B., and Foster, J.E., Insecticidal activity of monoterpenes against Rhyzopertha dominica (F.) and Tribolium castaneum (Herbst), J. Stored Prod. Res., 1998, vol. 34, pp. 243–249.CrossRefGoogle Scholar
  21. 21.
    Gouinguené, S.P. and Turlings, T.C.J., The effects of abiotic factors on induced volatile emissions in corn plants, Plant Physiol., 2002, vol. 129, pp. 1296–1307.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Huang, Y., Ho, S.H., Lee, H.C., and Yap, Y.L., Insecticidal properties of eugenol, isoeugenol and methyleugenol and their effects on nutrition of Sitophilus zeamais Motsch. (Coleoptera: Curculionidae) and Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), J. Stored Prod. Res., 2002, vol. 38, pp. 403–412.CrossRefGoogle Scholar
  23. 23.
    Xiao, C., Luo, F., and Wang, H.Y., Attraction of cotton bollworm, Helicoverpa armigera to o-hydroxybenzyl alcohol in field, Entomol. Knowledge, 2002, vol. 39, pp. 303–304.Google Scholar
  24. 24.
    Kobayashi, T., Nishimura, K., and Fujita, T., Effects of the a-cyano group in the benzyl alcohol moiety on insecticidal and neurophysiological activities of pyrethroid esters, Pestic. Biochem. Phys., 1989, vol. 35, pp. 231–243.CrossRefGoogle Scholar
  25. 25.
    Rudinsky, J.A. and Michael, R.R., Sound production in Scolytidae: 'rivalry' behaviour of male Dendroctonus beetles, J. Insect. Physiol., 1974, vol. 20, pp. 1219–1230.CrossRefPubMedGoogle Scholar
  26. 26.
    Pureswaran, D.S. and Borden, J.H., New repellent semiochemicals for three species of Dendroctonus (Coleoptera: Scolytidae), Chemoecology, 2004, vol. 14, pp. 67–75.CrossRefGoogle Scholar
  27. 27.
    Devi, K.P., Nisha, S.A., Sakthivel, R., and Pandian, S.K., Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane, J. Ethnopharmacol., 2010, vol. 130, pp. 107–115.CrossRefPubMedGoogle Scholar
  28. 28.
    Chami, N., Bennis, S., Chami, F., Aboussekhra, A., and Remmal, A., Study of anticandidal activity of carvacrol and eugenol in vitro and in vivo, Oral Microbiol. Immun., 2005, vol. 20, pp. 106–111.CrossRefGoogle Scholar
  29. 29.
    Flores, N., Jiménez, I.A., Giménez, A., Ruiz, G., Gutiérrez, D., Bourdy, G., and Bazzocchi, I.L., Benzoic acid derivatives from Piper species and their antiparasitic activity, J. Nat. Prod., 2008, vol. 71, pp. 1538–1543.CrossRefPubMedGoogle Scholar
  30. 30.
    Pei, H.L., Determination on isopropyl salicylate antibacterial activity in vitro, J. Anhui Agric. Sci., 2008, vol. 34: 013.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.College of ForestryNorthwest A&F UniversityYangling, ShaanxiChina
  2. 2.State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources (South China Agricultural University)College of Forestry and Landscape ArchitectureGuangzhouChina

Personalised recommendations