Advertisement

Russian Journal of Plant Physiology

, Volume 65, Issue 4, pp 579–587 | Cite as

Macromolecular Toxins Secreted by Botrytis cinerea Induce Programmed Cell Death in Arabidopsis Leaves

  • D. Huo
  • J. Wu
  • Q. Kong
  • G. B. Zhang
  • Y. Y. Wang
  • H. Y. Yang
Research Papers
  • 6 Downloads

Abstract

Botrytis cinerea causes grey mold disease in crops and horticultural plants. It is suspected to kill plant cells via secreted toxins and to derive nutrients from dead or dying cells. However, whether macromolecular phytotoxins (MPs) secreted by B. cinerea induce necrosis or also trigger a programmed cell death (PCD) remains to be determined. We have previously partially characterized MPs secreted by B. cinerea. Here we isolated MPs from B. cinerea culture and applied them to leaf cells, assessing PCD over the following 120 h. Cell death was assessed by propidium iodide (PI) and 4′,6-diamidino-2-phenylindole (DAPI) staining. Catalase (CAT), peroxidase (POD) activity and the cytochrome c/a ratio were assessed by spectrophotometer. POD isomers were measured using the benzidine acetate method. In Arabidopsis thaliana (L.) Heynh. exposed to B. cinerea MPs, we observed chromatin condensation and marginalization, nuclear substance leakage and accumulation of autofluorescent materials in the cell wall. Furthermore, B. cinerea MPs induced release of cytochrome c from the mitochondria into the cytosol. Moreover, CAT and POD activity was upregulated and the POD isoenzyme pattern was altered. In conclusion, A. thaliana exposed to B. cinerea MPs exhibits multiple hallmarks of PCD, suggesting that B. cinerea induces PCD in host cells through secreted macromolecules.

Keywords

Arabidopsis thaliana Botrytis cinerea macromolecule phytotoxins programmed cell death 

Abbreviations

PCD

programmed cell death

MPs

macromolecular phytotoxins

PI

propidium iodide

DAPI

4′,6-diamidino-2-phenylindole

CAT

catalase

POD

peroxidase

HR

hypersensitive response

PDA

potato dextrose agar

Cyt c/a

cytochrome c and a

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11183_2018_7007_MOESM1_ESM.pdf (40 kb)
Supplementary material, approximately 40 KB.

References

  1. 1.
    Williamson, B., Tudzynski, B., Tudzynski, P., and van Kan, J.A., Botrytis cinerea: the cause of grey mould disease, Mol. Plant Pathol., 2007, vol. 8, pp. 561–580.CrossRefPubMedGoogle Scholar
  2. 2.
    Govrin, E.M. and Levine, A., The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea, Curr. Biol., 2000, vol. 10, pp. 751–757.CrossRefPubMedGoogle Scholar
  3. 3.
    Etalo, D.W., Stulemeijer, I.J., van Esse, H.P., de Vos, R.C., Bouwmeester, H.J., and Joosten, M.H., System-wide hypersensitive response-associated transcriptome and metabolome reprogramming in tomato, Plant Physiol., 2013, vol. 162, pp. 1599–1617.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Schouten, A., Tenberge, K.B., Vermeer, J., Stewart, J., Wagemakers, L., Williamson, B., and van Kan, J.A., Functional analysis of an extracellular catalase of Botrytis cinerea, Mol. Plant Pathol., 2002, vol. 3, pp. 227–238.CrossRefPubMedGoogle Scholar
  5. 5.
    Van Baarlen, P., Staats, M., and van Kan, J.A.L., Induction of programmed cell death in lily by the fungal pathogen Botrytis elliptica, Mol. Plant Pathol., 2004, vol. 5, pp. 559–574.CrossRefGoogle Scholar
  6. 6.
    Choquer, M., Fournier, E., Kunz, C., Levis, C., Pradier, J.M., Simon, A., and Viaud, M., Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen, FEMS Microbiol. Lett., 2007, vol. 277, pp. 1–10.CrossRefPubMedGoogle Scholar
  7. 7.
    Kunz, C., Vandelle, E., Rolland, S., Poinssot, B., Bruel, C., Cimerman, A., Zotti, C., Moreau, E., Vedel, R., Pugin, A., and Boccara, M., Characterization of a new, nonpathogenic mutant of Botrytis cinerea with impaired plant colonization capacity, New Phytol., 2006, vol. 170, pp. 537–550.CrossRefPubMedGoogle Scholar
  8. 8.
    Staats, M., van Baarlen, P., Schouten, A., van Kan, J.A.L., and Bakker, F.T., Positive selection in phytotoxic protein-encoding genes of Botrytis species, Fungal Genet. Biol., 2007, vol. 44, pp. 52–63.CrossRefPubMedGoogle Scholar
  9. 9.
    Rossi, F.R., Gárriz, A., Marina, M., Romero, F.M., Gonzalez, M.E., Collado, I.G., and Pieckenstain, F.L., The sesquiterpene botrydial produced by Botrytis cinerea induces the hypersensitive response on plant tissues and its action is modulated by salicylic acid and jasmonic acid signaling, Mol. Plant–Microbe Interact., 2011, vol. 24, pp. 888–896.CrossRefPubMedGoogle Scholar
  10. 10.
    Hu, H.L., Dong, Q., Wu, J., Huo, D., Wang, Y.Y., and Yang, H.Y., Identification of damage on different plants caused by Botrytis cinerea and its macromolecular toxins, Plant Disease Pests, 2013, vol. 4, pp.16–19.Google Scholar
  11. 11.
    Yang, H.Y., Zhao, X.D., Wu, J., Hu, M., and Xia, S.L., The benefits of exogenous NO: enhancing Arabidopsis to resist Botrytis cinerea, Am. J. Plant Sci., 2011, vol. 2, pp. 511–519.CrossRefGoogle Scholar
  12. 12.
    Sarpeleh, A., Wallwork, H., Catcheside, D.E., Tate, M.E., and Able, A.J., Proteinaceous metabolites from Pyrenophora teres contribute to symptom development of barley net blotch, Phytopathology, 2007, vol. 97, pp. 907–915.CrossRefPubMedGoogle Scholar
  13. 13.
    Hagborg, W.A.F., A device for injecting solutions and suspensions into thin leaves of plants, Can. J. Bot., 1970, vol. 48, pp. 1135–1136.CrossRefGoogle Scholar
  14. 14.
    Deng, X., Wang, W., and Wang, Z., A simple device of the injection solution into the plant thin blade, Plant Physiol. J., 1992, vol. 28, p.296.Google Scholar
  15. 15.
    Chandra, A., Saxena, R., Dubey, A., and Saxena, P., Change in phenylalanine ammonia lyase activity and isozyme patterns of polyphenol oxidase and peroxidase by salicylic acid leading to enhance resistance in cowpea against Rhizoctonia solani, Acta Physiol. Plant., 2007, vol. 29, pp. 361–367.CrossRefGoogle Scholar
  16. 16.
    Kelly, B.M. and Wiskich, J.T., Respiration of mitochondria isolated from leaves and protoplasts of Avena sativa, Plant Physiol., 1988, vol. 87, pp. 705–710.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Yao, N., Eisfelder, B.J., Marvin, J., and Greenberg, J.T., The mitochondrion—an organelle commonly involved in programmed cell death in Arabidopsis thaliana, Plant J., 2004, vol. 40, pp. 596–610.CrossRefPubMedGoogle Scholar
  18. 18.
    Zhang, L., Oh, Y., Li, H., Baldwin, I.T., and Galis, I., Alternative oxidase in resistance to biotic stresses: Nicotiana attenuata AOX contributes to resistance to a pathogen and a piercing-sucking insect but not Manduca sexta larvae, Plant Physiol., 2012, vol. 160, pp. 1453–1467.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Van Doorn, W.G., Classes of programmed cell death in plants, compared to those in animals, J. Exp. Bot., 2011, vol. 62, pp. 4749–4761.CrossRefPubMedGoogle Scholar
  20. 20.
    Zhang, L., Jia, C., Liu, L., Zhang, Z., Li, C., and Wang, Q., The involvement of jasmonates and ethylene in Alternaria alternata f. sp. lycopersici toxin-induced tomato cell death, J. Exp. Bot., 2011, vol. 62, pp. 5405–5418.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yao, N., Tada, Y., Park, P., Nakayashiki, H., Tosa, Y., and Mayama, S., Novel evidence for apoptotic cell response and differential signals in chromatin condensation and DNA cleavage in victorin-treated oats, Plant J., 2001, vol. 28, pp. 13–26.CrossRefPubMedGoogle Scholar
  22. 22.
    Yao, N., Imai, S., Tada, Y., Nakayashiki, H., Tosa, Y., Park, P., and Mayama, S., Apoptotic cell death is a common response to pathogen attack in oats, Mol. Plant–Microbe Interact., 2002, vol. 15, pp. 1000–1007.CrossRefPubMedGoogle Scholar
  23. 23.
    Soylu, S. and Soylu, E.M., Preliminary characterization of race-specific elicitors from Peronospora parasitica and their ability to elicit phenolic accumulation in Arabidopsis, Phytoparasitica, 2003, vol. 31, pp. 381–392.CrossRefGoogle Scholar
  24. 24.
    Mansfield, J.W. and Richardson, A., The ultrastructure of interactions between Botrytis species and broad bean leaves, Physiol. Plant Pathol., 1981, vol. 19, pp. 41–48.CrossRefGoogle Scholar
  25. 25.
    Chen, Q., Zhang, G.B., Shi, M., Zhang, Z.L., Yan, B., and Yang, H.Y., Identification of phytotoxicity and laccase properties of extracellular macromolecule substance from Botrytis cinerea, China Vegetables, 2015, vol. 7, pp. 29–33.Google Scholar
  26. 26.
    Oh, Y., Baldwin, I.T., and Galis, I., NaJAZh regulates a subset of defense responses against herbivores and spontaneous leaf necrosis in Nicotiana attenuata plants, Plant Physiol., 2012, vol. 159, pp. 769–788.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Imberty, A., Goldberg, R., and Catesson, A.M., Isolation and characterization of Populus isoperoxidases involved in the last step of lignin formation, Planta, 1985, vol. 164, pp. 221–226.CrossRefPubMedGoogle Scholar
  28. 28.
    Syros, T., Yupsanis, T., Zafiriadis, H., and Economou, A., Activity and isoforms of peroxidases, lignin and anatomy, during adventitious rooting in cuttings of Ebenus cretica L., J. Plant Physiol., 2004, vol. 161, pp. 69–77.CrossRefPubMedGoogle Scholar
  29. 29.
    Lam, E., Kato, N., and Lawton, M., Programmed cell death, mitochondria and the plant hypersensitive response, Nature, 2001, vol. 411, pp. 848–853.PubMedGoogle Scholar
  30. 30.
    Pattanayak, G.K., Venkataramani, S., Hortensteiner, S., Kunz, L., Christ, B., Moulin, M., Smith, A.G., Okamoto, Y., Tamiaki, H., Sugishima, M., and Greenberg, J.T., ACCELERATED CELL DEATH2 suppresses mitochondrial oxidative bursts and modulates cell death in Arabidopsis, Plant J., 2012, vol. 69, pp. 589–600.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. Huo
    • 1
  • J. Wu
    • 1
  • Q. Kong
    • 1
  • G. B. Zhang
    • 2
  • Y. Y. Wang
    • 1
  • H. Y. Yang
    • 2
  1. 1.College of Plant Protection, Ministry of Education Key Laboratory for Agricultural Biodiversity and Pest ManagementYunnan Agricultural UniversityYunnan, KunmingChina
  2. 2.College of Life Science and TechnologyKunming UniversityKunmingChina

Personalised recommendations