Russian Journal of Plant Physiology

, Volume 65, Issue 4, pp 465–476 | Cite as

Chloroplasts: Structure and Expression of the Plastid Genome

  • V. V. KusnetsovEmail author


During the last two decades much success in studying plastid genome structure and expression was achieved. The primary sequence of hundreds of plant plastid genomes has been determined, which allows us to understand basic laws of plastome structure. Novel chloroplast nuclear-encoded RNA-polymerases and sigma-factors have been discovered. Mechanisms responsible for posttranscriptional regulation of plastid genes' expression, including splicing and editing, are actively being studied. Increasingly more data on the most important role of nucleoids in chloroplast biogenesis is emerging. Much attention is presently given to studying the proteins associated with bacterial type RNA-polymerase. Determination of the primary sequence of genomes for a number of higher plants has produced new information on the exchange of genetic material between cell organelles. At present, interorganelle signaling in plant cells is a subject of active study. In the review, a wide range of issues is quite briefly discussed, including some elements of chloroplast evolution and nuclear-plastid signaling. Certain features of chloroplast genetic material organization are described. In addition, basic stages of plastid genome expression are discussed.


posttranscriptional stages of plastid genes expression plastome structure and expression transcription nuclear-plastid signaling 



large subunit of ribuloso bisphosphate carboxylase


Mg-protoporphyirin IX


phage type nuclear-encoded RNA-polymerase


proteins associated with bacterial type RNA-polymerase


chloroplast bacterial type RNA-polymerase


Shine-Dalgarno sequence


thylakoid membranes of chloroplast


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Danilenko, N.G. and Davydenko, O.G., Miry genomov organell (The Worlds of Organelle Genomes), Minsk: Tekhnalogiya, 2003.Google Scholar
  2. 2.
    Martin, W. and Herrmann, R.G., Gene transfer from organelles to the nucleus: how much, what happens, and why? Plant Physiol., 1998, vol. 118, pp. 9–17.PubMedGoogle Scholar
  3. 3.
    Martin, W., Rujan, T., Richly, E., Hansen, A., Cornelsen, S., Lins, T., Leister, D., Stoebe, B., Hasegawa, M., and Penny, D., Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 12246–12251.CrossRefPubMedGoogle Scholar
  4. 4.
    Nakayama, T. and Archibald, J.M., Evolving a photosynthetic organelle, BMC Biol., 2012, vol. 10: 35. doi 10.1186/1741-7007-10-35CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Matsuo, M., Ito, Y., Yamauchi, R., and Obokata, J., The rice nuclear genome continuously integrates, shuffles, and eliminates the chloroplast genome to cause chloroplast–nuclear DNA flux, Plant Cell, 2005, vol. 17, pp. 665–675.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Cullis, C.A., Vorster, B.J., van der Vyver, C., and Kunert, K.J., Transfer of genetic material between the chloroplast and nucleus: how is it related to stress in plants? Ann. Bot., 2009, vol. 103, pp. 625–633.CrossRefPubMedGoogle Scholar
  7. 7.
    Stegemann, S., Hartmann, S., Ruf, S., and Bock, R., High-frequency gene transfer from the chloroplast genome to the nucleus, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 8828–8833.CrossRefPubMedGoogle Scholar
  8. 8.
    Huang, C.Y., Ayliffe, M.A., and Timmis, J.N., Direct measurement of the transfer rate of chloroplast DNA into the nucleus, Nature, 2003, vol. 422, pp. 72–76.CrossRefPubMedGoogle Scholar
  9. 9.
    Bräutigam, K., Dietzel, L., and Pfannschmidt, Th., Plastid–nucleus communication: anterograde and retrograde signalling in the development and function of plastids, in Topics in Current Genetic, Vol. 19: Cell and Molecular Biology of Plastids, Bock, R., Ed., Berlin, Heidelberg: Springer-Verlag, 2007, pp. 409–451.Google Scholar
  10. 10.
    Kleffmann, T., Hirsch-Hoffmann, M., Gruissem, W., and Baginsky, S., plprot: A comprehensive proteome database for different plastid types, Plant Cell Physiol., 2006, vol. 47, pp. 432–436.CrossRefPubMedGoogle Scholar
  11. 11.
    Nott, A., Jung, H.-S., Kousservitzky, S., and Chory, J., Plastid-to-nucleus retrograde signaling, Annu. Rev. Plant Biol., 2006, vol. 57, pp. 739–759.CrossRefPubMedGoogle Scholar
  12. 12.
    Yurina, N.P., Osipenkova, O.V., and Odintsova, M.S., Higher plant tetrapyrrols: their biosynthesis and its regulation, tetrapyrrol role in transmission of retrograde signals, Russ. J. Plant Physiol., 2012, vol. 59, pp. 1–13.CrossRefGoogle Scholar
  13. 13.
    Börner, T., The discovery of plastid-to-nucleus retrograde signaling—a personal perspective, Protoplasma, 2017, vol. 254, no. 5: pp. 1845–1855. doi 10.1007/s00709-017-1104-1CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Mayfield, S. and Taylor, W., Carotenoid-deficient maize seedlings fail to accumulate lightharvesting chlorophyll a/b binding protein (LHCP) mRNA, Eur. J. Biochem., 1984, vol. 144, pp. 79–84.CrossRefPubMedGoogle Scholar
  15. 15.
    Oelmüller, R. and Mohr, H., Photooxidative destruction of chloroplasts and its cosequences for expression of nuclear genes, Planta, 1986, vol. 167, pp. 106–113.CrossRefPubMedGoogle Scholar
  16. 16.
    Strand, A., Plastid-to-nucleus signaling, Curr. Opin. Plant Biol., 2004, vol. 7, pp. 621–625.CrossRefPubMedGoogle Scholar
  17. 17.
    Susek, R., Ausubel, F., and Chory, J., Signal transduction mutants of Arabidopsis uncouple nuclear CAB and RBCS gene expression from chloroplast development, Cell, 1993, vol. 74, pp. 787–799.CrossRefPubMedGoogle Scholar
  18. 18.
    Fey, V., Wagner, R., Bräutigam, K., Wirtz, M., Hell, R., Dietzmann, A., Leister, D., Oelmäller, R., and Pfannschmidt, T., Retrograde plastid redox signals in the expression of nuclear genes for chloroplast proteins of Arabidopsis thaliana, J. Biol. Chem., 2005, vol. 280, pp. 5318–5328.CrossRefPubMedGoogle Scholar
  19. 19.
    Op den Camp, R.G., Przybyla, D., Ochsenbein, C., Laloi, C., Kim, C., Danon, A., Wagner, D., Hideg, E., Gobel, C., Feussner, I., Nater, M., and Apel, K., Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis, Plant Cell, 2003, vol. 15, pp. 2320–2332.CrossRefGoogle Scholar
  20. 20.
    Wagner D., Przybyla D., Op den Camp, R., Kim, C., Landgraf, F., Lee, K.P., Wursch, M., Laloi, C., Nater, M., Hideg, E., and Apel, K., The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana, Science, 2004, vol. 306, pp. 1183–1185.CrossRefPubMedGoogle Scholar
  21. 21.
    Hedtke, B., Wagner, I., Börner, T., and Hess, W.R., Inter-organellar crosstalk in higher plants: impaired chloroplast development affects mitochondrial gene and transcript levels, Plant J., 1999, vol. 19, pp. 635–643.CrossRefPubMedGoogle Scholar
  22. 22.
    Hess, W.R., Hübschmann, T., and Börner, T., Ribosome-deficient plastids of albostrians barley: extreme representatives of non-photosynthetic plastids, Endocytobiosis Cell Res., 1994, vol. 10, pp. 65–80.Google Scholar
  23. 23.
    Busi, M.V., Gomez-Lobato, M.E., Rius, S.P., Turowski, V.R., Casati, P., Zabaleta, E.J., Gomez-Casati, D.F., and Araya, A., Effect of mitochondrial dysfunction on carbon metabolism and gene expression in flower tissues of Arabidopsis thaliana, Mol. Plant, 2011, vol. 4, pp. 127–143.CrossRefPubMedGoogle Scholar
  24. 24.
    Joyard, J., Ferro, M., Masselon, Ch., Seigneurin-Berny, D., Salvi, D., Garin, J., and Rolland, N., Chloroplast proteomics and the compartmentation of plastidial isoprenoid biosynthetic pathways, Mol. Plant, 2009, vol. 2, pp. 1154–1180.CrossRefPubMedGoogle Scholar
  25. 25.
    Sakakibara, H., Cytokinins: activity, biosynthesis, and translocation, Annu. Rev. Plant Biol., 2006, vol. 57, pp. 431–449.CrossRefPubMedGoogle Scholar
  26. 26.
    Reyes-Prieto, A. and Moustafa, A., Plastid-localized amino acid biosynthetic pathways of Plantae are predominantly composed of non-cyanobacterial enzymes, Sci. Rep., 2012, vol. 2, pp. 1–12. doi 10.1038/srep00955CrossRefGoogle Scholar
  27. 27.
    Clément, C. and Pacini, E., Anther plastids in angiosperms, Bot. Rev., 2001, vol. 67: 54. doi 10.1007/BF02857849CrossRefGoogle Scholar
  28. 28.
    Pyke, K., Plastid biogenesis and differentiation, in Topics in Current Genetics, Vol. 19: Cell and Molecular Biology of Plastids, Bock, R., Ed., Berlin, Heidelberg: Springer-Verlag, 2007, pp. 1–28.Google Scholar
  29. 29.
    Ris, H. and Plaut, W., Ultrastructure of DNA-containing areas in the chloroplast of Chlamydomonas, J. Cell Biol., 1962, vol. 13, pp. 383–391.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bendich, A.J., Why do chloroplasts and mitochondria contain so many copies of their genome? BioEssays, 1987, vol. 6, pp. 279–282.CrossRefPubMedGoogle Scholar
  31. 31.
    Liere, K. and Berner, T., Development-dependent changes in the amount and structural organization of plastid DNA, in Plastid Development in Leaves during Growth and Senescence, Advances in Photosynthesis and Respiration, Biswal, B., Krupinska, K., and Biswal, U.C., Eds., Dordrecht: Springer Science+Business Media, 2013, pp. 215–237.CrossRefGoogle Scholar
  32. 32.
    Baumgartner, B.J., Rapp, J.C., and Mullet, J.E., Plastid transcription activity and DNA copy number increase early in barley chloroplast development, Plant Physiol., 1989, vol. 89, pp. 1011–1118.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Evans, I.M., Rus, A.M., Belanger, E.M., Kimoto, M., and Brusslan, J.A., Dismantling of Arabidopsis thaliana mesophyll cell chloroplasts during natural leaf senescence, Plant Biol., 2010, vol. 12, pp. 1–12.CrossRefPubMedGoogle Scholar
  34. 34.
    Wicke, S., Schneeweiss, G.M., de Pamphilis, C.W., Müller, K.F., and Quandt, D., The evolution of the plastid chromosome in land plants: gene content, gene order, gene function, Plant Mol. Biol., 2011, vol. 76, pp. 273–297.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Sugiura, M., The chloroplast genome, Plant Mol. Biol., 1992, vol. 19, pp. 149–168.CrossRefPubMedGoogle Scholar
  36. 36.
    Bock, R., Structure, function, and inheritance of plastid genomes, in Topics in Current Genetics, Vol. 19: Cell and Molecular Biology of Plastids, Bock, R., Ed., Berlin, Heidelberg: Springer-Verlag, 2007, pp. 29–62.Google Scholar
  37. 37.
    Yurina, N.P., Sharapova, L.S., and Odintsova, M.S., Structure of plastid genomes of photosynthetic eukaryotes, Biochemistry (Moscow), 2017, vol. 82, pp. 678–691.CrossRefGoogle Scholar
  38. 38.
    Antonov, A.S., Genosistematika rastenii (Plant Gene Systematics), Moscow: Akademkniga, 2006.Google Scholar
  39. 39.
    Averina, N.G., Rudoi, A.B., Savchenko, G.E., Fradkin, L.I., Chaika, M.T., Belyaeva, O.B., Odintsova, M.S., Ostrovskaya, L.K., and Filippovich, I.I., Biosintez pigmentnogo apparata fotosinteza (The Biosynthesis of Photosynthetic Pigment Apparatus), Minsk: Nauka i tekhnika, 1988.Google Scholar
  40. 40.
    Liere, K. and Börner, T., Transcription and transcriptional regulation in plastids, in Topics in Current Genetics, Vol. 19: Cell and Molecular Biology of Plastids, Bock, R., Ed., Berlin, Heidelberg: Springer-Verlag, 2007, pp. 121–174.Google Scholar
  41. 41.
    Lysenko, E.A., Plant sigma factors and their role in plastid transcription, Plant Cell Rep., 2007, vol. 26, pp. 845–859.CrossRefPubMedGoogle Scholar
  42. 42.
    Sasaki, Y., Konishi, T., and Nagano, Y., The compartmentation of acetyl-coenzyme A carboxylase in plants, Plant Physiol., 1995, vol. 108, pp. 445–449.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Krupinska, K., Melonek, J., and Krause, K., New insights into plastid nucleoid structure and functionality, Planta, 2013, vol. 237, pp. 653–664.CrossRefPubMedGoogle Scholar
  44. 44.
    Sakai, A., Takano, H., and Kuroiwa, H., Organelle nuclei in higher plants: structure, composition, function, and evolution, Int. Rev. Cytol., 2004, vol. 238, pp. 59–118.CrossRefPubMedGoogle Scholar
  45. 45.
    Pfalz, J. and Pfannschmidt, Th., Essential nucleoid proteins in early chloroplast development, Trends Plant Sci., 2013, vol. 18, pp. 186–194.CrossRefPubMedGoogle Scholar
  46. 46.
    Melonek, J., Oetke, S., and Krupinska, K., Multifunctionality of plastid nucleoids as revealed by proteome analyses, Biochim. Biophys. Acta, 2016, vol. 1864, pp. 1016–1038.CrossRefPubMedGoogle Scholar
  47. 47.
    Majeran, W., Friso, G., Asakura, Y., Qu, X., Huang, M., Ponnala, L., Watkins, K.P., Barkan, A., and van Wijk, K.J., Nucleoid-enriched proteomes in developing plastids and chloroplasts from maize leaves; a new conceptual framework for nucleoid functions, Plant Physiol., 2012, vol. 158, pp. 156–189.CrossRefPubMedGoogle Scholar
  48. 48.
    Kabeya, Y., Nakanishi, H., Suzuki, K., Ichikawa, T., Kondou, Y., Matsui, M., and Miyagishima, S.Y., TheYlmG protein has a conserved function related to the distribution of nucleoids in chloroplasts and cyanobacteria, BMC Plant Biol., 2010, vol. 10: 57. doi 10.1186/1471-2229-10-57CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Krupinska, K., Oetke, S., Desel, C., Mulisch, M., Schäfer, A., Hollmann, J., Kumlehn, J., and Hensel, G., WHIRLY1 is a major organizer of chloroplast nucleoids, Front. Plant Sci., 2014, vol. 5: 432. doi 10.3389/fpls.2014.00432CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Lysenko, E.A. and Kusnetsov, V.V., Plastid RNA polymerases, Mol. Biol., 2005, vol. 39, pp. 762–775.CrossRefGoogle Scholar
  51. 51.
    Liere, K. and Börner, T., Transcription of plastid genes, in Regulation of Transcription in Plants, Grasser, K.D., Ed., Oxford: Blackwell, 2006, pp. 184–224.Google Scholar
  52. 52.
    Lerbs-Mache, S., Function of plastid sigma factors in higher plants: regulation of gene expression or just preservation of constitutive transcription? Plant Mol. Biol., 2011, vol. 76, pp. 235–249.CrossRefPubMedGoogle Scholar
  53. 53.
    Nagashima, A., Hanaoka, M., Shikanai, T., Fujiwara, M., Kanamaru, K., Takahashi, H., and Tanaka, K., The multiple-stress responsive plastid sigma factor, SIG5, directs activation of the psbD blue light-responsive promoter (BLRP) in Arabidopsis thaliana, Plant Cell Physiol., 2004, vol. 45, pp. 357–368.CrossRefPubMedGoogle Scholar
  54. 54.
    Steiner, S., Schröter, Y., Pfalz, J., and Pfannschmidt, T., Identification of essential subunits in the plastidencoded RNA polymerase complex reveals building blocks for proper plastid development, Plant Physiol., 2011, vol. 157, pp. 1043–1055.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Yu, Q.B., Huang, C., and Yang, Z.N., Nuclearencoded factors associated with the chloroplast transcription machinery of higher plants, Front. Plant Sci., 2014, vol. 5: 316. doi 10.3389/fpls.2014.00316PubMedPubMedCentralGoogle Scholar
  56. 56.
    Hess, W.R. and Börner, T., Organellar RNA polymerases of higher plants, Int. Rev. Cytol., 1999, vol. 190, pp. 1–59.CrossRefPubMedGoogle Scholar
  57. 57.
    Börner, T., Aleynikova, A.Yu., Zubo, Ya.O., and Kusnetsov, V.V., Chloroplast RNA polymerases: role in chloroplast biogenesis, Biochim. Biophys. Acta—Bioenergetics, 2015, vol. 1847, pp. 761–769.CrossRefGoogle Scholar
  58. 58.
    Tarasenko, V.I., Katyshev, A.I., Yakovleva, T.V., Garnik, E.Y., Chernikova, V.V., Konstantinov, Y.M., and Koulintchenko, M.V., RPOTmp, an Arabidopsis RNA polymerase with dual targeting, plays an important role in mitochondria, but not in chloroplasts, J. Exp. Bot., 2016, vol. 67, pp. 5657–5669.CrossRefPubMedGoogle Scholar
  59. 59.
    Legen, J., Kemp, S., Krause, K., Profanter, B., Herrmann, R.G., and Maier, R., Comparative analysis of plastid transcription profiles of entire plastid chromosomes from tobacco attributed to wild-type end PEP-deficient transcription machineries, Plant J., 2002, vol. 31, pp. 171–188.CrossRefPubMedGoogle Scholar
  60. 60.
    Zhelayzkova, P., Sharma, C.V., Förstner, K.U., Liere, K., Vogel, J., and Börner, T., The primary transcriptome of barley chloroplasts: numerous noncoding RNAs and the domonating role of the plastidencoded RNA polymerase, Plant Cell, 2012, vol. 24, pp. 123–136.CrossRefGoogle Scholar
  61. 61.
    Eberhard, S., Drapier, D., and Wollman, F.-A., Searching limiting steps in the expression of chloroplast-encoded proteins: relations between gene copy number, transcription, transcript abundance and translation rate in the chloroplast of Chlamydomonas reinhardtii, Plant J., 2002, vol. 31, pp. 149–160.CrossRefPubMedGoogle Scholar
  62. 62.
    Fromm, H., Devic, M., Fluhr, R., Edelman, M., Control of psbA gene expression: in mature Spirodela chloroplasts light regulation of 32-kD protein synthesis is independent of transcript level, EMBO J., 1985, vol. 4, pp. 291–295.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Klaff, P. and Gruissem, W., Changes in chloroplast mRNA stability during leaf development, Plant Cell, 1991, vol. 3, pp. 517–529.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Kahlau, S. and Bock, R., Plastid transcriptomics and translatomics of tomato fruit development and chloroplast-to-chromoplast differentiation: chromoplast gene expression largely serves the production of a single protein, Plant Cell, 2008, vol. 20, pp. 856–874.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Westhoff, P. and Herrmann, R.G., Complex RNA maturation in chloroplasts. The psbB operon from spinach, Eur. J. Biochem., 1988, vol. 171, pp. 551–564.CrossRefPubMedGoogle Scholar
  66. 66.
    Schmitz-Linneweber, C. and Barkan, A., RNA splicing and RNA editing in chloroplasts, in Topics in Current Genetic, Vol. 19: Cell and Molecular Biology of Plastids, Bock, R., Ed., Berlin, Heidelberg: Springer-Verlag, 2007, pp. 213–248.Google Scholar
  67. 67.
    Stern, D.B., Goldschmidt-Clermont, M., and Hanson, M.R., Chloroplast RNA metabolism, Annu. Rev. Plant Biol., 2010, vol. 61, pp. 125–155.CrossRefPubMedGoogle Scholar
  68. 68.
    Germain, A., Hotto, A.M., Barkan, A., and Stern, D.B., RNA processing and decay in plastids, Wiley Interdiscip. Rev. RNA, 2013, vol. 4, pp. 295–316.CrossRefPubMedGoogle Scholar
  69. 69.
    Bock, R., Sense from nonsense: how the genetic information of chloroplasts is altered by RNA editing, Biochimie, 2000, vol. 82, pp. 549–557.CrossRefPubMedGoogle Scholar
  70. 70.
    Shikanai, T., RNA editing in plants: machinery and flexibility of site recognition, Biochim. Biophys. Acta, 2015, vol. 1847, pp. 779–785. doi 10.1016/j.bbabio. 2014.12.010CrossRefPubMedGoogle Scholar
  71. 71.
    Sugiura, M., RNA editing in chloroplasts, in Nucleic Acids and Molecular Biology, Vol. 20: RNA Editing, Güringer, H.U., Ed., Berlin, Heidelberg: Springer-Verlag, 2008, pp. 123–142.Google Scholar
  72. 72.
    Barkan, A., Expression of plastid genes: organelle-specific elaborations on a prokaryotic scaffold, Plant Physiol., 2011, vol. 155, pp. 1520–1532.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Hunt, A.G., Messenger RNA 3'-end formation and the regulation of gene expression, in Regulation of Gene Expression in Plants, Bassett, C.L., Ed., Berlin, Heidelberg: Springer-Verlag, 2007, pp. 101–122.CrossRefGoogle Scholar
  74. 74.
    Tiller, N. and Bock, R., The translational apparatus of plastids and its role in plant development, Mol. Plant, 2014, vol. 7, pp. 1105–1120.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Peled-Zehavi, H. and Danon, A., Translation and translational regulation in chloroplasts, in Topics in Current Genetic, Vol. 19: Cell and Molecular Biology of Plastids, Bock, R., Ed., Berlin, Heidelberg: Springer-Verlag, 2007, pp. 249–281.Google Scholar
  76. 76.
    Sugiura, M., Hirose, T., and Sugita, M., Evolution and mechanism of translation in chloroplasts, Annu. Rev. Genet., 1998, vol. 32, pp. 437–459.CrossRefPubMedGoogle Scholar
  77. 77.
    Motohashi, R., Yamazaki, T., Myouga, F., Ito, T., Ito, K., Satou, M., Kobayashi, M., Nagata, N., Yoshida, S., Nagashima, A., Tanaka, K., Takahashi, S., and Shinozaki, K., Chloroplast ribosome release factor 1 (AtcpRF1) is essential for chloroplast development, Plant Mol. Biol., 2007, vol. 64, pp. 481–497.CrossRefPubMedGoogle Scholar
  78. 78.
    Wang, L., Ouyang, M., Li, Q., Zou, M., Guo, J., Ma, J., Lu, C., and Zhang, L., The Arabidopsis chloroplast ribosome recycling factor is essential for embryogenesis and chloroplast biogenesis, Plant Mol. Biol., 2010, vol. 74, pp. 47–59.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations