Russian Journal of Plant Physiology

, Volume 65, Issue 4, pp 498–511 | Cite as

Role of CLE41 Peptide in the Development of Root Storage Parenchyma in Species of the Genus Raphanus L.

  • M. S. Gancheva
  • I. E. DoduevaEmail author
  • L. A. Lutova
Research Papers


CLE peptides (CLAVATA3/ENDOSPERM SURROUNDING REGION) are signal molecules or plant peptide hormones that play an important role in regulation of development of various meristems governing the expression of WOX (WUSCHEL-RELATED HOMEOBOX) genes. In particular, CLE peptides belonging to a small TDIF (Tracheary Element Differentiation Inhibitory Factor) group are responsible for the operation of gene WOX4 controlling the development of cambium and the conducting system. We looked into the role of CLE41 peptide from the TDIF group in the development of storage root in two species of the genus Raphanus: cultivated radish (Raphanus sativus var. radicula Pers.) that is a popular root crop with a storage root and its ancestor wild radish (Raphanus raphanistrum L.) where storage parenchyma of the root is poorly developed. It was shown that overexpression of gene RsCLE41 and plant treatment with exogenous peptide CLE41 influenced the development of cambium and xylem in the roots of R. sativus and R. raphanistrum and affected expression of the genes from different groups. One could say that peptide CLE41 activates expression of the genes whose homologues in arabidopsis play a key role in the maintenance of cambium (RsWOX4, RsWOX14, RsHAM4, and RsCYCD3). In the storage root of radish, peptide CLE41 activates proliferation of cambium cells reducing the amount of one of the xylem’s elements (lignified parenchyma). The obtained results point to an important role of CLE41 in the development of storage root in radish.


Raphanus sativus R. raphanistrum storage root lateral meristems CLE peptides TDIF CLE41 cambium xylem 





real-time polymerase chain reaction


tracheary element differentiation inhibitory factor


transcription factor


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gancheva, M.S., Dodueva, I.E., Lebedeva, M.A., Tvorogova, V.E., Tkachenko, A.A., and Lutova, L.A., Identification, expression, and functional analysis of CLE genes in radish (Raphanus sativus L.) storage root, BMC Plant Biol., 2016, vol. 16, suppl. 1: 7. doi 10.1186/s12870-015-0687-yCrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lebedeva, M.A., Tvorogova, V.E., Vinogradova, A.P., Gancheva, M.S., Azarakhsh, M., Ilina, E.L., Demchenko, K.N., Dodueva, I.E., and Lutova, L.A., Initiation of spontaneous tumors in radish (Raphanus sativus): cellular, molecular and physiological events, J. Plant Physiol., 2015, vol. 173, pp. 97–104.CrossRefGoogle Scholar
  3. 3.
    Hayward, H.E., The Structure of Economic Plants, New York: Macmillan Company, 1938.Google Scholar
  4. 4.
    Dorofeev, V.F., Morphological and anatomical study of vegetative organs of cultural plants of the genus Brassica L., Tr. Prikl. Bot. Genet. Selek., 1957, vol. 31, no. 2, pp. 259–268.Google Scholar
  5. 5.
    Moskaleva, G.I., Anatomical structure of underground organs of intraspecific forms Raphanus sativus L., Bull. All-Union Plant Breeding Inst., 1976, no. 64, pp. 28–34.Google Scholar
  6. 6.
    Esau, K., Anatomy of Seed Plants, New York: J. Wiley and Sons, 1977.Google Scholar
  7. 7.
    Jang, G., Lee, J.H., Rastogi, K., Park, S., Oh, S.H., and Lee, J.Y., Cytokinin-dependent secondary growth determines root biomass in radish (Raphanus sativus L.), J. Exp. Bot., 2015, vol. 66, pp. 4607–4619.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Dodueva, I.E., Yurlova, E.V., Osipova, M.A., and Lutova, L.A., CLE peptides are universal regulators of meristem development, Russ. J. Plant Physiol., 2012, vol. 59, pp. 14–27.CrossRefGoogle Scholar
  9. 9.
    Yamaguchi, Y.L., Ishida, T., and Sawa, S., CLE peptides and their signaling pathways in plant development, J. Exp. Bot., 2016, vol. 67, pp. 4813–4826.CrossRefPubMedGoogle Scholar
  10. 10.
    Van der Graaff, E., Laux, T., and Rensing, S.A., The WUS homeobox-containing (WOX) protein family, Genome Biol., 2009, vol. 10, pp. 238–248.CrossRefGoogle Scholar
  11. 11.
    Sarkar, A.K., Luijten, M., Miyashima, S., Lenhard, M., Hashimoto, T., Nakajima, K., Scheres, B., Heidstra, R., and Laux, T., Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers, Nature, 2007, vol. 446, pp. 811–814.CrossRefPubMedGoogle Scholar
  12. 12.
    Ito, Y., Nakanomyo, I., Motose, H., Iwamoto, K., Sawa, S., Dohmae, N., and Fukuda, H., Dodeca-CLE peptides as suppressors of plant stem cell differentiation, Science, 2006, vol. 313, pp. 842–845.CrossRefPubMedGoogle Scholar
  13. 13.
    Hirakawa, Y., Kondo, Y., and Fukuda, H., Regulation of vascular development by CLE peptide-receptor systems, J. Integr. Plant Biol., 2010, vol. 52, pp. 8–16.CrossRefPubMedGoogle Scholar
  14. 14.
    Etchells, J.P. and Turner, S.R., The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division, Development, 2010, vol. 137, pp. 767–774.CrossRefPubMedGoogle Scholar
  15. 15.
    Ji, J., Strable, J., Shimizu, R., Koenig, D., Sinha, N., and Scanlon, M.J., WOX4 promotes procambial development, Plant Physiol., 2010, vol. 152, pp. 1346–1356.CrossRefPubMedGoogle Scholar
  16. 16.
    Etchells, J.P., Provost, C.M., Mishra, L., and Turner, S.R., WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organisation, Development, 2013, vol. 140, pp. 2224–2234.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Yaginuma, H., Hirakawa, Y., Kondo, Y., Ohashi-Ito, K., and Fukuda, H., A novel function of TDIF-related peptides: promotion of axillary bud formation, Plant Cell Physiol., 2011, vol. 52, pp. 1354–1364.CrossRefPubMedGoogle Scholar
  18. 18.
    Zhou, Y., Liu, X., Engstrom, E.M., Nimchuk, Z.L., Pruneda-Paz, J.L., Tarr, P.T., Yan, A., Kay, S.A., and Meyerowitz, E.M., Control of plant stem cell function by conserved interacting transcriptional regulators, Nature, 2015, vol. 517, pp. 377–380.CrossRefPubMedGoogle Scholar
  19. 19.
    Whitford, R., Fernandez, A., de Groodt, R., Ortega, E., and Hilson, P., Plant CLE peptides from two distinct functional classes synergistically induce division of vascular cells, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, pp. 18625–18630.CrossRefPubMedGoogle Scholar
  20. 20.
    Kaneko, Y., Bang, S.W., and Matsuzawa, Y. Wild Crop Relatives: Genomic and Breeding Resources, Ch. 11: Raphanus, Berlin, Heidelberg: Springer, 2011, pp. 247–258.CrossRefGoogle Scholar
  21. 21.
    Buzovkina, I.S. and Lutova, L.A., The genetic collection of radish inbred lines: History and prospects, Russ. J. Genet., 2007, vol. 43, no. 10, pp. 1181–1192.CrossRefGoogle Scholar
  22. 22.
    Holmes, D.S. and Bonner, J., Preparation, molecular weight, base composition, and secondary structure of giant nuclear ribonucleic acid, Biochemistry, 1973, vol. 12, pp. 2330–2338.CrossRefPubMedGoogle Scholar
  23. 23.
    Inoue, H., Nojima, H., and Okayama, H., High efficiency transformation of Escherichia coli with plasmids, Gene, 1990, vol. 96, pp. 23–28.CrossRefPubMedGoogle Scholar
  24. 24.
    Limpens, E., Ramos, J., Franken, C., Raz, V., Compaan, B., Franssen, H., Bisseling, T., and Geurts, R., RNA interference in Agrobacterium rhizogenes–transformed roots of Arabidopsis and Medicago truncatula, J. Exp. Bot., 2004, vol. 55, pp. 983–992.CrossRefPubMedGoogle Scholar
  25. 25.
    Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method, Methods, 2001, vol. 25, pp. 402–408.CrossRefPubMedGoogle Scholar
  26. 26.
    Guo, X., Wang, J., Gardner, M., Fukuda, H., Kondo, Y., Etchells, J.P., Wang, X., and Mitchum, M.G., Identification of cyst nematode B-type CLE peptides and modulation of the vascular stem cell pathway for feeding cell formation, PLoS Pathog., 2017, vol. 13, no. 2: e1006142. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Dewitte, W., Scofield, S., Alcasabas, A.A., Maughan, S.C., Menges, M., Braun, N., Collins, C., Nieuwland, J., Prinsen, E., Sundaresan, V., and Murray, J.A., Arabidopsis CYCD3 D-type cyclins link cell proliferation and endocycles and are rate-limiting for cytokinin responses, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, pp. 14537–14542.CrossRefPubMedGoogle Scholar
  28. 28.
    Tsuda, K. and Hake, S., Diverse functions of KNOX transcription factors in the diploid body plan of plants, Curr. Opin. Plant Biol., 2015, vol. 27, pp. 91–96.CrossRefPubMedGoogle Scholar
  29. 29.
    Jasinski, S., Piazza, P., Craft, J., Hay, A., Woolley, L., Rieu, I., Phillips, A., Hedden, P., and Tsiantis, M., KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities, Curr. Biol., 2005, vol. 15, pp. 1560–1565.CrossRefPubMedGoogle Scholar
  30. 30.
    Azarakhsh, M., Kirienko, A.N., Zhukov, V.A., Lebedeva, M.A., Dolgikh, E.A., and Lutova, L.A., KNOTTED1-LIKE HOMEOBOX 3: a new regulator of symbiotic nodule development, J. Exp. Bot., 2015, vol. 66, no. 22.
  31. 31.
    Cruz-Ramírez, A., Díaz-Triviño, S., Blilou, I., Grieneisen, V.A., Sozzani, R., Zamioudis, C., Miskolczi, P., Nieuwland, J., Benjamins, R., Dhonukshe, P., Caballero-Pérez, J., Horvath, B., Long, Y., Mähönen, A.P., Zhang, H., et al., A bistable circuit involving SCARECROW-RETINOBLASTOMA integrates cues to inform asymmetric stem cell division, Cell, 2012, vol. 150, pp. 1002–1015.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ilegems, M., Douet, V., Meylan-Bettex, M., Uyttewaal, M., Brand, L., Bowman, J.L., and Stieger, P.A., Interplay of auxin, KANADI and Class III HD-ZIP transcription factors in vascular tissue formation, Development, 2010, vol. 137, pp. 975–984.CrossRefPubMedGoogle Scholar
  33. 33.
    Dodueva, I.E., Frolova, N.V., and Lutova, L.A., Plant tumorigenesis: different ways for shifting systemic control of plant cell division and differentiation, Transgenic Plant J., 2007, vol. 1, pp. 17–38.Google Scholar
  34. 34.
    Skylar, A., Hong, F., Chory, J., Weigel, D., and Wu, X., STIMPY mediates cytokinin signaling during shoot meristem establishment in Arabidopsis seedlings, Development, 2010, vol. 137, pp. 541–549.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Liebsch, D., Sunaryo, W., Holmlund, M., Norberg, M., Zhang, J., Hall, H.C., Helizon, H., Jin, X., Helariutta, Y., Nilsson, O., Polle, A., and Fischer, U., Class I KNOX transcription factors promote differentiation of cambial derivatives into xylem fibers in the Arabidopsis hypocotyl, Development, 2014, vol. 141, pp. 4311–4319.CrossRefPubMedGoogle Scholar
  36. 36.
    Dodueva, I.E., Gancheva, M.S., Osipova, M.A., Tvorogova, V.E., and Lutova, L.A., Lateral meristems of higher plants: phytohormonal and genetic control, Russ. J. Plant Physiol., 2014, vol. 61, pp. 571–589.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. S. Gancheva
    • 1
  • I. E. Dodueva
    • 1
    Email author
  • L. A. Lutova
    • 1
  1. 1.Department of Genetics and BiotechnologySt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations