Comprehensive Investigation of Morphological Properties of ABS/Nanoclay/PMMA Polymeric Nanocomposite Foam

  • Sajjad Mamaghani Shishavan
  • Taher Azdast
  • Rezgar HasanzadehEmail author
  • Milad Moradian


The effect of process parameters of foam injection molding on the morphologicalproperties of acrylonitrile butadiene styrene (ABS)-nanoclay polymeric foam has been investigated. Polymethyl methacrylate (PMMA) was used as the compatibilizer between polymeric matrix and nanoclay. Different nanocomposite polymeric foam samples were produced in a chemical foam injection molding process. X-ray diffraction (XRD) test was carried out to analyze the dispersion of nanoclays with different percentages in the polymeric matrix and scanning electron microscopy (SEM) pictures were used to study the cellular structure of nanocomposite foamed samples. The effect of input parameters including nanoclay weight percentage (0, 2, and 4%), Injection Pressure (110, 125, and 140 MPa), and Holding pressure (110, 125, and 140 MPa) on cell density, cell size and expansion ratio of foamed samples have been investigated. Taguchi approach was used for the design of experiments and statistical analysis of results. Based on the results, 2 wt % of nanoclay and injection and holding pressures of 140 MPa is beneficial in order to have polymeric foam with small cell size. On the other hand, to achieve foams with higher cell density, 2 wt % of nanoclay, injection pressure of 140 MPa, and holding pressure of 110 MPa should be used.


  1. 1.
    Polymeric Foams: Innovations in Processes, Technologies, and Products, Ed. by S. T. Lee (CRC Press, Boca Raton, 2016).Google Scholar
  2. 2.
    P. Dallas, V. K. Sharma, and R. Zboril, Adv. Colloid Interface Sci. 166, 119 (2011).CrossRefGoogle Scholar
  3. 3.
    D. Papoulis, S. Komarneni, D. Panagiotaras, E. Stathatos, K. C. Christoforidis, M. Fernández-García, H. Li, Y. Shu, T. Sato, and H. Katsuki, Appl. Catal., B 147, 526 (2014).CrossRefGoogle Scholar
  4. 4.
    R. Eungkee Lee, R. Hasanzadeh, and T. Azdast, Plast., Rubber Compos. 46, 155 (2017).CrossRefGoogle Scholar
  5. 5.
    N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia, B. Zhang, B. Tang, M. Chan, and J. K. Kim, Adv. Mater. 26, 5480 (2014).CrossRefGoogle Scholar
  6. 6.
    M. C. Altay, E. Y. Malikov, G. M. Eyvazova, M. B. Muradov, O. H. Akperov, R. Puskás, D. Madarász, Z. Kónya, and Á. Kukovecz, Eur. Polym. J. 68, 47 (2015).CrossRefGoogle Scholar
  7. 7.
    R. Hasanzadeh, T. Azdast, A. Doniavi, and R. E. Lee, Polyolefins J. 6, 13 (2019).Google Scholar
  8. 8.
    A. Tsuchiya, H. Tateyama, T. Kikuchi, T. Takahashi, and K. Koyama, Polym. J. 39, 514 (2007).CrossRefGoogle Scholar
  9. 9.
    P. Saraeian, H. R. Tavakoli, and A. Ghassemi, J. Compos. Mater. 47, 2211 (2013).CrossRefGoogle Scholar
  10. 10.
    B. Azerag, T. Azdast, A. Doniavi, S. M. Shishavan, and R. E. Lee, Int. J. Mech. Mater. Eng. 10, 19 (2015).CrossRefGoogle Scholar
  11. 11.
    A. Doniavi, S. Babazadeh, T. Azdast, and R. Hasanzadeh, J. Elastomers Plast. 49, 498 (2016).CrossRefGoogle Scholar
  12. 12.
    V. Modanloo, R. Hasanzadeh, and P. Esmaili, Int. J. Eng., Trans. A 29, 103 (2016).Google Scholar
  13. 13.
    T. Azdast, R. Hasanzadeh, and M. Moradian, Mater. Manuf. Processes 33, 343 (2018).CrossRefGoogle Scholar
  14. 14.
    M. Daryadel, T. Azdast, R. Hasanzadeh, and S. Molani, J. Appl. Polym. Sci. 135, 46098 (2018).CrossRefGoogle Scholar
  15. 15.
    R. Eungkee Lee, A. Afsari Ghazi, T. Azdast, R. Hasanzadeh, and M. S. Shishavan, Adv. Polym. Technol. 37, 1737 (2017).CrossRefGoogle Scholar
  16. 16.
    B. K. Deka and T. K. Maji, Composites, Part A 42, 2117 (2011).CrossRefGoogle Scholar
  17. 17.
    D. M. D. Costa, T. I. Paula, P. A. P. Silva, and A. P. Paiva, Int. J. Adv. Des. Manuf. Technol. 87, 825 (2016).CrossRefGoogle Scholar
  18. 18.
    R. Hasanzadeh, T. Azdast, A. Doniavi, S. Babazadeh, R. E. Lee, M. Daryadel, and S. M. Shishavan, Int. J. Eng., Trans. A 30, 143 (2017).Google Scholar
  19. 19.
    C. Suryanarayana and M. G. Norton, X-ray Diffraction: a Practical Approach (Springer Sci. and Business Media, New York, 2013).Google Scholar
  20. 20.
    M. Nofar and C. B. Park, Prog. Polym. Sci. 39, 1721 (2014).CrossRefGoogle Scholar
  21. 21.
    B. Notario, J. Pinto, and M. A. Rodríguez-Pérez, Polymer 63, 116 (2015).CrossRefGoogle Scholar
  22. 22.
    Y. Kim, C. B. Park, P. Chen, and R. B. Thompson, Soft Matter 7, 7351 (2011).CrossRefGoogle Scholar
  23. 23.
    X. Cao, L. J. Lee, T. Widya, and C. Macosko, Polymer 46, 775 (2005).CrossRefGoogle Scholar
  24. 24.
    L. J. Lee, C. Zeng, X. Cao, X. Han, J. Shen, and G. Xu, Compos. Sci. Technol. 65, 2344 (2005).CrossRefGoogle Scholar
  25. 25.
    M. Antunes and J. I. Velasco, Prog. Polym. Sci. 39, 486 (2014).CrossRefGoogle Scholar
  26. 26.
    Foam Extrusion: Principles and Practice, Ed. by S. T. Lee and C. B. Park (CRC Press, Boca Raton, 2014).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Sajjad Mamaghani Shishavan
    • 1
  • Taher Azdast
    • 2
  • Rezgar Hasanzadeh
    • 2
    Email author
  • Milad Moradian
    • 1
  1. 1.Young Researchers and Elite Club, Urmia Branch, Islamic Azad UniversityUrmiaIran
  2. 2.Mechanical Engineering Department, Urmia UniversityUrmiaIran

Personalised recommendations