Polymer Science, Series A

, Volume 60, Issue 6, pp 845–853 | Cite as

Nanocomposites Based on Porous Polylactide, Obtained by Crazing Mechanism in Water–Ethanol Solutions, and Calcium Phosphates

  • E. S. TrofimchukEmail author
  • A. V. Efimov
  • M. A. Moskvina
  • O. A. Ivanova
  • N. I. Nikonorova
  • S. B. Zezin
  • A. V. Bakirov
  • A. L. Volynskii


Systematic investigations of uniaxial deformation of an amorphous isotropic polylactide film in water–ethanol solutions of different composition are carried out and optimal conditions for polymer deformation by the crazing mechanism are determined. In the whole range of the solution compositions, the polylactide deformation is accompanied by the formation of a highly dispersed fibrillar-porous structure according to the mechanism of classical crazing. When the ethanol content is ~35 wt %, the film deformability increases sharply, and it reaches 400–500% in solutions with the ethanol content of more than 45 wt %. The fine structure of the polylactide crazes during deformation in a 50% aqueous ethanol solution is studied in situ by X-ray scattering at small angles. The intensity distribution curves for polylactide samples, regardless of the degree of deformation, are characterized by the presence of an interference maximum, which indicates the regular arrangement of the individual fibrils in crazes relative to each other. The interfibrillar distance is 40 nm at the degree of deformation up to 200%. Composite materials containing nanoparticles (average crystallite size is ~30 nm) of various biologically active calcium phosphates are obtained on the basis of porous polylactide matrices (with a volumetric porosity of ~45 vol %) using the method of countercurrent diffusion between aqueous solutions of calcium nitrate and ammonium hydrogen phosphate. The filler content has reached 30 wt %. Such organomineral materials are considered promising in the field of biomedicine.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Current Developments in Biotechnology and Bioengineering. Production, Isolation and Purification of Industrial Products, Ed. by A. Pandey, S. Negi, and C.R. Soccol (Elsevier, Amsterdam; Boston; Heidelberg, 2017).Google Scholar
  2. 2.
    K. Hamad, M. Kaseem, H. W. Yang, F. Deri, and Y. G. Ko, eXPRESS Polym. Lett. 9, 435 (2015).CrossRefGoogle Scholar
  3. 3.
    J. Ren, Biodegradable Poly(lactic acid): Synthesis, Modification, Processing, and Applications (Springer, Berlin; Heidelberg, 2010).Google Scholar
  4. 4.
    S. Farah, D. G. Anderson, and R. Langer, Adv. Drug Delivery Rev. 107, 367 (2016).CrossRefGoogle Scholar
  5. 5.
    J.-M. Raquez, Y. Habibi, M. Murariu, and Ph. Dubois, Prog. Polym. Sci. 38, 1504 (2013).CrossRefGoogle Scholar
  6. 6.
    H. Zhou, J. G. Lawrence, and S. B. Bhaduri, Acta Biomater. 8, 1999 (2012).CrossRefGoogle Scholar
  7. 7.
    N. Monmaturapoj, A. Srion, P. Chalermkarnon, S. Buchatip, A. Petchsuk, W. Noppakunmongkolchai, and K. Mai-Ngam, J. Biomater. Appl. 32, 175 (2017).CrossRefGoogle Scholar
  8. 8.
    Z. T. Birgani, C. A. van Blitterswijk, and P. Habibovic, J. Mater. Sci. 27, 12 (2016).Google Scholar
  9. 9.
    D. M. Zuev, E. S. Klimashina, P. V. Evdokimov, Ya. Yu. Filippov, and V. I. Putlyaev, Inorg. Mater. 54, 87 (2018).CrossRefGoogle Scholar
  10. 10.
    P. J. Ginty, M. J. Whitaker, K. M. Shakesheff, and S. M. Howdle, Mater. Today 8 (8), 42 (2005).CrossRefGoogle Scholar
  11. 11.
    L. I. Cabezas, V. Fernández, R. Mazarro, I. Gracia, A. de Lucas, and J. F. Rodríguez, J. Supercrit. Fluids 63, 155 (2013).CrossRefGoogle Scholar
  12. 12.
    S. Chitrattha and T. Phaechamud, Mater. Sci. Eng., C 58, 1122 (2016).CrossRefGoogle Scholar
  13. 13.
    A. L. Volynskii and N. F. Bakeev, Surface Phenomena in the Structural and Mechanical Behavior of Solid Polymers (CRC Press, Taylor and Francis Group, Boca Raton, 2016).CrossRefGoogle Scholar
  14. 14.
    A. Y. Yarysheva, E. G. Rukhlya, L. M. Yarysheva, D. V. Bagrov, A. L. Volynskii, and N. F. Bakeev, Eur. Polym. J. 66, 458 (2015).CrossRefGoogle Scholar
  15. 15.
    O. Weichold, P. Goel, E. Heine, and M. Möller, J. Appl. Polym. Sci. 112, 2634 (2009).CrossRefGoogle Scholar
  16. 16.
    O. V. Arzhakova, A. A. Dolgova, L. M. Yarysheva, A. L. Volynskii, and N. F. Bakeev, Polymer 56, 256 (2015).CrossRefGoogle Scholar
  17. 17.
    E. S. Trofimchuk, N. I. Nikonorova, A. O. Chagarovskii, A. L. Volynskii, and N. F. Bakeev, J. Phys. Chem. B 2019 (34), 16278.Google Scholar
  18. 18.
    E. S. Trofimchuk, E. A. Nesterova, I. B. Meshkov, N. I. Nikonorova, A. M. Muzafarov, and N. Ph. Bakeev, Macromolecules 40, 9111 (2007).CrossRefGoogle Scholar
  19. 19.
    A. L. Volynskii and N. F. Bakeev, Polym. Sci., Ser. C 53, 35 (2011).CrossRefGoogle Scholar
  20. 20.
    E. S. Trofimchuk, N. I. Nikonorova, E. V. Semenova, E. A. Nesterova, A. M. Muzafarov, I. B. Meshkov, V. V. Kazakova, A. L. Volynskii, and N. F. Bakeev, Nanotechnol. Russ. 3, 201 (2008).CrossRefGoogle Scholar
  21. 21.
    P. Goel, M. Möller, and O. Weichold, Chem. Mater. 21, 3036 (2009).CrossRefGoogle Scholar
  22. 22.
    E. S. Trofimchuk, D. K. Mal’tsev, N. G. Sedush, A. V. Efimov, N. I. Nikonorova, T. E. Grokhovskaya, S. N. Chvalun, A. L. Volynskii, and N. F. Bakeev, Dokl. Phys. 59, 568 (2014).CrossRefGoogle Scholar
  23. 23.
    E. S. Trofimchuk, N. I. Nikonorova, M. A. Moskvina, A. V. Efimov, M. A. Khavpachev, and A. L. Volynskii, Polymer 142, 43 (2018).CrossRefGoogle Scholar
  24. 24.
    E. S. Trofimchuk, A. V. Efimov, T. E. Grokhovskaya, N. I. Nikonorova, M. A. Moskvina, N. G. Sedush, P. V. Dorovatovskii, O. A. Ivanova, E. G. Rukhlya, A. L. Volynskii, and S. N. Chvalun, ACS Appl. Mater. Interfaces 9, 34325 (2017).CrossRefGoogle Scholar
  25. 25.
    M. Okamoto and B. John, Prog. Polym. Sci. 38, 1487 (2013).CrossRefGoogle Scholar
  26. 26.
    H. E. Swanson, H. F. McMurdie, M. C. Morris, and E. H. Evans, Standard X-ray Diffraction Powder Patterns: Section 7 (UNT Digital Library, Washington, 1969).CrossRefGoogle Scholar
  27. 27.
    J. D. Hanawalt, H. W. Rinn, and K. Frevel, Ind. Eng. Chem., Anal. Ed. 10, 457 (1938).CrossRefGoogle Scholar
  28. 28.
    WWW-MINCRYST, Crystallographic and Crystallochemical Database for Minerals and their Structural Analogues. php. Cited 2018.Google Scholar
  29. 29.
    G. Schimmel, Elektronenmikroskopische Methodik (Springer-Verlag, Berlin; Heidelberg, 1969).CrossRefGoogle Scholar
  30. 30.
    H. R. Brown, P. J. Mills, and E. J. Kramer, J. Polym. Sci., Polym. Phys. Ed. 23, 1857 (1985).CrossRefGoogle Scholar
  31. 31.
    E. Paredes and E. W. Fischer, Macromol. Chem. 180, 2707 (1979).CrossRefGoogle Scholar
  32. 32.
    P. F. Schofield, K. S. Knight, and J. A. M. van der Houwen, Phys. Chem. Miner. 31, 606 (2004).CrossRefGoogle Scholar
  33. 33.
    K. Onuma and A. Ito, Chem. Mater. 10, 3346 (1998).CrossRefGoogle Scholar
  34. 34.
    I. Fadeeva, E. Trofimchuk, M. Giretova, D. Mal’tsev, N. Nikonorova, A. Fomin, J. Rau, L. Medvecky, and S. Barinov, Biomed. Phys. Eng. Express 1 (4), 045011 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. S. Trofimchuk
    • 1
    Email author
  • A. V. Efimov
    • 1
  • M. A. Moskvina
    • 1
  • O. A. Ivanova
    • 1
  • N. I. Nikonorova
    • 1
  • S. B. Zezin
    • 1
  • A. V. Bakirov
    • 2
    • 3
  • A. L. Volynskii
    • 1
  1. 1.Faculty of ChemistryMoscow State UniversityMoscowRussia
  2. 2.National Research CenterKurchatov InstituteMoscowRussia
  3. 3.Enikolopov Institute of Synthetic Polymeric MaterialsRussian Academy of SciencesMoscowRussia

Personalised recommendations