Polymer Science, Series A

, Volume 60, Issue 6, pp 911–923 | Cite as

Glass-Transition Temperature and Characteristic Temperatures of α Transition in Amorphous Polymers Using the Example of Poly(methyl methacrylate)

  • O. V. StartsevEmail author
  • M. P. Lebedev
Investigation Methods


The glass-transition temperatures of poly(methyl methacrylate) measured by 20 different physical methods are analyzed. At equal impact frequencies and heating rates of the samples, the values of glass-transition temperatures measured by different methods are equivalent. As follows from the analysis, for atactic PMMA with Mw > 1 × 105 without additives, crosslinking agents, and plasticizers at a standard heating rate of 10°С/min, the most probable values of the extrapolated onset temperature of the α transition Tf as a point of intersection of the first baseline and a line extrapolating linear decrease in heat flow in the region of the α transition are 105 ± 5°С; inflection temperatures corresponding to the temperature of a peak on the temperature derivative of heat flow in the region of the α transition Ti and the temperature of the midpoint determined at the half jump of normalized heat flow Tm are observed at 125 ± 5°С; and the values of the extrapolated end temperature of the α transition Te as the points of intersection of the line extrapolating the linear decrease in heat flow in the region of the α transition and the second baseline in the region of the rubbery state and the temperature of the last return to the second baseline Tr attain 140 ± 5°С.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Tager, Physics and Chemistry of Polymers (Nauchnyi mir, Moscow, 2010) [in Russian].Google Scholar
  2. 2.
    N. I. Perepechko, Introduction to Polymer Physics (Khimiya, Moscow, 1978) [in Russian].Google Scholar
  3. 3.
    G. M. Bartenev and A. G. Barteneva, Relaxation Properties of Polymers (Khimiya, Moscow, 1992) [in Russian].Google Scholar
  4. 4.
    A. A. Askadskii, Polymer Deformation (Khimiya, Moscow, 1973) [in Russian].Google Scholar
  5. 5.
    T. V. Tropin, Ju. V. P. Shmelzer, and V. L. Aksenov, Phys.-Usp. 59, 42 (2016).Google Scholar
  6. 6.
    T. S. Chow, Polym. Eng. Sci. 24, 1079 (1984).CrossRefGoogle Scholar
  7. 7.
    T. F. Protzman, J. Appl. Phys 20, 627 (1949).CrossRefGoogle Scholar
  8. 8.
    ASTM E1356–08: Standard Test Method for Assignment of the Glass Transition Temperatures by Differential Scanning Calorimetry, 2014.Google Scholar
  9. 9.
    ASTM D3418–15: Standard test Method for Transition Temperatures and Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning Calorimetry, 2015.Google Scholar
  10. 10.
    ASTM D6604–00: Standard Practice for Glass Transition Temperatures of Hydrocarbon Resins by Differential Scanning Calorimetry, 2000.Google Scholar
  11. 11.
    ASTM E1545–00: Standard test Method for Assignment of the Glass Transition Temperature by Thermomechanical Analysis, 2000.Google Scholar
  12. 12.
    ASTM E1824–18: Standard Test Method for Assignment of a Glass Transition Temperature using Thermomechanical Analysis: Tension Method, 2018.Google Scholar
  13. 13.
    ASTM E1640–18: Standard Test Method for Assignment of the Glass Transition Temperature by Dynamic Mechanical Analysis, 2018.Google Scholar
  14. 14.
    ASTM D7028–07: Standard Test Method for Glass Transition Temperature (DMA) of Polymer Matrix Composites by Dynamic Mechanical Analysis (DMA), 2015.Google Scholar
  15. 15.
    I. Havlicek, V. Vojta, M. Ilavsky, and J. Hrouz, Macromolecules 13, 357 (1980).CrossRefGoogle Scholar
  16. 16.
    U. Ali, K. G. B. Abd. Karim, and N. A. Buang, Polym. Rev. 55, 678 (2015).CrossRefGoogle Scholar
  17. 17.
    L. Chang and E. M. Woo, Polym. Chem. 1, 198 (2010).CrossRefGoogle Scholar
  18. 18.
    N. M. Alves, J. L. G. Ribelles, J. A. G. Tejedor, and J. F. Mano, Macromolecules 37, 3735 (2004).CrossRefGoogle Scholar
  19. 19.
    J. Biros, T. Larina, J. Trekoval, and J. Pouchly, Colloid Polym. Sci. 260, 27 (1982).CrossRefGoogle Scholar
  20. 20.
    A. Bironeau, T. Salez, G. Miquelard-Garnier, and C. Sollogoub, Macromolecules 50, 4064 (2017).CrossRefGoogle Scholar
  21. 21.
    T. G. Gerasimov, M. Cinke, M. Meyyappan, and J. P. Harmon, Polym. Bull. 52, 259 (2004).CrossRefGoogle Scholar
  22. 22.
    B. L. Denq, Y. S. Hu, W. Y. Chiu, L. W. Chen, and Y. S. Chid, Polym. Degrad. Stab. 57, 269 (1997).CrossRefGoogle Scholar
  23. 23.
    T. Dudek and J. Lohr, J. Appl. Polym. Sci. 9, 3795 (1965).CrossRefGoogle Scholar
  24. 24.
    M. Eriksson, H. Goossens, and T. Peijs, Nanocomposites 1, 36 (2015).CrossRefGoogle Scholar
  25. 25.
    C. M. Evans and J. M. Torkelson, Polymer 53, 6118 (2012).CrossRefGoogle Scholar
  26. 26.
    F. Fernandes-Martin, I. Fernandes-Pierola, and A. Horta, J. Polym. Sci., Polym. Phys. Ed. 19, 1353 (1981).CrossRefGoogle Scholar
  27. 27.
    D. S. Fryer, R. D. Peters, E. J. Kim, J. E. Tomaszewski, J. J. de Pablo, P. F. Nealey, C. C. White, and W. Wu, Macromolecules 34, 5627 (2001).CrossRefGoogle Scholar
  28. 28.
    Y. Fu, Y.-T. R. Lau, L.-T. Weng, K.-M. Ng, and C.-M. Chan, J. Colloid Interface Sci. 504, 758 (2017).CrossRefPubMedGoogle Scholar
  29. 29.
    P. Gilormini, L. Chevalier, and G. Regnier, Polym. Eng. Sci. 50, 2004 (2010).CrossRefGoogle Scholar
  30. 30.
    S. Kalachandra and D. T. Turner, J. Polym. Sci., Part B: Polym. Phys. 25, 97 (1987).Google Scholar
  31. 31.
    S.-W. Kuo, H.-C. Kao, and F.-C. Chang, Polymer 44, 6873 (2003).CrossRefGoogle Scholar
  32. 32.
    S. L. Malhotra, L. Minh, and L. P. Blanchhard, J. Macromol. Sci., Part A: Pure Appl. Chem. 19, 579 (1983).CrossRefGoogle Scholar
  33. 33.
    Y. Nakamura, E. Kariya, T. Fukuda, S. Fujii, K. Fujiwara, and S. Hikasa, Polym. Polym. Compos. 21, 367 (2013).Google Scholar
  34. 34.
    G. Palm, R. B. Dupaix, and J. Castro, J. Eng. Mater. Technol. 128, 559 (2006).CrossRefGoogle Scholar
  35. 35.
    P. Poomalai and T. O. Varghese, and Siddaramaiah, ISRN Mater. Sci. 2011, Art. 921293 (2011).Google Scholar
  36. 36.
    N. R. Pradhan and G. S. Iannacchione, J. Phys. D: Appl. Phys. 43, Art. 105401 (2010).Google Scholar
  37. 37.
    G. L. G. Ribelles, M. M. Pradas, J. M. M. Duenas, and C. T. Cabanilles, J. Non-Cryst. Solids 307–310, 731 (2002).Google Scholar
  38. 38.
    L. S. A. Smith and V. Schmitz, Polymer 29, 1871 (1988).CrossRefGoogle Scholar
  39. 39.
    P. Spasojevic, M. Zrilic, V. Panic, D. Stamenkovic, S. Seslija, and S. Velickovic, Int. J. Polym. Sci. 2015, Art. ID 561012 (2015).Google Scholar
  40. 40.
    N. Tanio, H. Kato, Y. Koike, H. E. Bair, S. Matsuoka, and L. L. Bluler, Jr., Polym. J. 30, 56 (1998).CrossRefGoogle Scholar
  41. 41.
    P. Thomas, R. S. E. Ravindran, and K. B. R. Varma, J. Therm. Anal. Calorim. 115, 1311 (2014).CrossRefGoogle Scholar
  42. 42.
    S.-L. Yeh, C.-Y. Zhu, and S.-W. Kuo, Polymers 7, 1379 (2015).CrossRefGoogle Scholar
  43. 43.
    G. Zhang, J. Zhang, S. Wang, and D. Shen, J. Polym. Sci., Part B: Polym. Phys. 41, 23 (2003).CrossRefGoogle Scholar
  44. 44.
    G. M. Bartenev, Vysokomol. Soedin., Ser. A 29, 67 (1987).Google Scholar
  45. 45.
    I. A. Dyachkov, Moscow Univ. Chem. Bull. (Engl. Transl.) 65, 304 (2010).CrossRefGoogle Scholar
  46. 46.
    A. I. Slutsker, Yu. I. Polikarpov, and K. V. Vasil’eva, Tech. Phys. 47, 880 (2002).CrossRefGoogle Scholar
  47. 47.
    P. Rittigstein and J. M. Torkelson, J. Polym. Sci., Part B: Polym. Phys. 44, 2935 (2006).CrossRefGoogle Scholar
  48. 48.
    N. Garcia, T. Corrales, J. Guzman, and P. Tiemblo, Polym. Degrad. Stab. 92, 635 (2007).CrossRefGoogle Scholar
  49. 49.
    C. Li, J. Wu, J. Zhao, D. Zhao, and Q. Fan, Eur. Polym. J. 40, 1807 (2004).CrossRefGoogle Scholar
  50. 50.
    R. Avolio, G. Gentile, M. Avella, D. Capitani, and M. E. Errico, J. Polym. Sci., Part A: Polym. Chem. 48, 5618 (2010).CrossRefGoogle Scholar
  51. 51.
    P. S. Chinthamanipeta, S. Kobukata, H. Nakata, and D. A. Shipp, Polymer 49, 5636 (2008).CrossRefGoogle Scholar
  52. 52.
    J. Moll and S. K. Kumar, Macromolecules 45, 1131 (2012).CrossRefGoogle Scholar
  53. 53.
    J. F. De Deus, G. P. Souza, W. A. Corradini, T. D. Z. Atvars, and L. Akcelrud, Macromolecules 37, 6938 (2004).CrossRefGoogle Scholar
  54. 54.
    S. Agrawal, D. Patida, M. Dixit, and K. Sharma, AIP Conf. Proc. 1249, 79 (2010).CrossRefGoogle Scholar
  55. 55.
    W. N. Ayre, S. P. Denyer, and S. L. Evans, J. Mech. Behav. Biomed. Mater. 32, 76 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    I. M. Barszczewska-Rybarek, A. Korytkowska-Wałach, M. Kurcok, G. Chladek, and J. Jacek Kasperski, Acta Bioeng. Biomech. 19, 47 (2017).PubMedGoogle Scholar
  57. 57.
    M. Dixit, S. Gupta, V. Mathur, K. S. Rrathore, K. Sharma, and N. S. Saxena, Chalcogenide Lett 6, 131 (2009).Google Scholar
  58. 58.
    W. G. Gall and N. G. McCrum, J. Polym. Sci. 50, 489 (1961).CrossRefGoogle Scholar
  59. 59.
    R. A. Haldon and R. Simha, J. Appl. Phys. 39, 1890 (1968).CrossRefGoogle Scholar
  60. 60.
    J. K. Gillham and S. J. Stadnicki, J. Appl. Polym. Sci. 21, 401 (1977).CrossRefGoogle Scholar
  61. 61.
    D. Ionita, M. Cristea, and D. Banabic, J. Therm. Anal. Calorim. 120, 1775 (2015).CrossRefGoogle Scholar
  62. 62.
    A. S. Merenga and G. A. Katana, Int. J. Polym. Mater. 60, 115 (2011).CrossRefGoogle Scholar
  63. 63.
    C. W. van der Wal, Rheol. Acta 6, 316 (1967).CrossRefGoogle Scholar
  64. 64.
    O. V. Startsev, V. P. Rudnev, and B. V. Perov, Polym. Degrad. Stab. 39, 373 (1993).CrossRefGoogle Scholar
  65. 65.
    K. Wollny, in Application Note Physica Rheometers (Anton Paar Germany GmbH, Germany, 2006), p. 1.Google Scholar
  66. 66.
    S. R. Valandro, P. C. Lombardo, A. L. Poli, M. A. Horn, M. G. Neumann, and C. C. S. Cavalheiro, Mater. Res. 17, 265 (2014).CrossRefGoogle Scholar
  67. 67.
    O. V. Startsev, V. P. Rudnev, Yu. N. Ivonin, E. F. Nikishin, E. A. Barbashev, V. A. Bogatov, and B. V. Perov, Vysokomol. Soedin., Ser. A 29, 2577 (1987).Google Scholar
  68. 68.
    O. V. Startsev and V. P. Rudnev, Vysokomol. Soedin., Ser. B 30, 18 (1988).Google Scholar
  69. 69.
    Y.-H. Hu, C.-Y. Chen, and C.-C. Wang, Polym. Degrad. Stab. 84, 545 (2004).CrossRefGoogle Scholar
  70. 70.
    W. M. Davis and C. W. Macosko, Polym. Eng. Sci. 17, 32 (1977).CrossRefGoogle Scholar
  71. 71.
    G. M. Bartenev, Polym. Sci., Ser. B 43, 202 (2001).Google Scholar
  72. 72.
    G. M. Bartenev, V. A. Lomovskoi, E. Yu. Ovchinnikov, N. Yu. Karandashova, and V. V. Tulinova, Vysokomol. Soedin., Ser. A 35, 1658 (1993).Google Scholar
  73. 73.
    H. Shindo, I. Murakami, and H. Yamamura, J. Polym. Sci., Part A-1: Polym. Chem. 7, 297 (1969).CrossRefGoogle Scholar
  74. 74.
    E. V. Thompson, J. Polym. Sci., Part A-1: Polym. Chem. 4, 199 (1966).CrossRefGoogle Scholar
  75. 75.
    J. A. Shetter, J. Polym. Sci., Part B: Polym. Lett. 1, 209 (1963).CrossRefGoogle Scholar
  76. 76.
    A. A. Tager, A. I. Suvorova, L. N. Goldyrev, V. I. Esafov, and L. P. Topina, Vysokomol. Soedin. 4, 809 (1962).Google Scholar
  77. 77.
    A. N. Maslov, S. G. Novozhenina, L. A. Smirnova, N. A. Agareva, A. P. Aleksandrov, N. M. Bityurin, and V. A. Barachevskii, Vestn. Nizhegorodskogo Univ. im. N.I. Lobachevskogo, Ser. Khim., No. 1, 24 (2001).Google Scholar
  78. 78.
    R. Klein, Laser Welding of Plastics: Materials, Processes and Industrial Applications. Material Properties of Plastics (Wiley, Weinheim, 2012), Chap. 1.Google Scholar
  79. 79.
    P. D. Condo and K. P. Johnson, J. Polym. Sci., Part B: Polym. Phys. 32, 523 (1994).CrossRefGoogle Scholar
  80. 80.
    G. M. Bartenev and B. Tsoi, Vysokomol. Soedin., Ser. A 27, 2422 (1985).Google Scholar
  81. 81.
    G. M. Bartenev, D. Shermatov, and A. G. Barteneva, Polym. Sci., Ser. B 43, 708 (2001).Google Scholar
  82. 82.
    D. Mathiesen, D. Vogtmann, and R. Dupaix, in Proceedings of Annual Conference on Experimental and Applied Mechanics “Challenges in Mechanics of Time-Dependent Materials and Processes ion Conventional and Mulrifunctional Materials”, Lombard, IL, USA, 2014 (Lombard, 2014), Vol. 2.Google Scholar
  83. 83.
    J. R. McLoughlin and A. V. Tobolsky, J. Colloid Sci. 7, 555 (1952).CrossRefGoogle Scholar
  84. 84.
    I. Perepechko, Acoustic Methods of Investigation Polymers (Mir, Moscow, 1975).Google Scholar
  85. 85.
    L. I. Pavlinov, I. B. Rabinovich, V. Z. Pogorelko, and A. V. Ryabov, Vysokomol. Soedin., Ser. A 10, 1270 (1968).Google Scholar
  86. 86.
    I. I. Perepechko and O. V. Startsev, Akust. Zh. 22, 749 (1976).Google Scholar
  87. 87.
    K. Fukao, S. Uno, Y. Miyamoto, A. Hoshino, and H. Miyaji, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 64, 051807 (2001).CrossRefGoogle Scholar
  88. 88.
    M. Wubbenhorst, C. A. Murray, J. A. Forrest, and J. R. Dutcher, in Proceedings of 11 International Symposium on Electrets, Melbourne, Australia, 2002 (Melbourne, 2002), p. 401.Google Scholar
  89. 89.
    M. Erber, M. Tress, E. U. Mapesa, A. Serghei, K.-J. Eichhorn, B. Voit, and F. Kremer, Macromolecules 43, 7729 (2010).CrossRefGoogle Scholar
  90. 90.
    T. Hayashi and K. Fukao, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 89, 022602 (2014).CrossRefGoogle Scholar
  91. 91.
    F. Namouchi, H. Smaoui, H. Guermazi, N. Fourati, C. Zerrouki, S. Agnel, A. Toureille, and J. J. Bonnet, Phys. Procedia 2, 961 (2009).CrossRefGoogle Scholar
  92. 92.
    W. Wunderlich, in Polymer Handbook, Ed. by J. Brandrup, E. H. Immergut, and E. A. Grulke (Wiley, New York, 1975).Google Scholar
  93. 93.
    W. N. Dos Santos, J. A. de Sousa, and R. Gregorio, Polym. Test. 32, 987 (2013).CrossRefGoogle Scholar
  94. 94.
    S. Agarval, N. S. Sahena, and V. Kumar, Appl. Nanosci. 5, 697 (2015).CrossRefGoogle Scholar
  95. 95.
    Z. M. Elimat, A. M. Zixlif, and M. Avella, J. Exp. Nanosci. 3, 259 (2008).CrossRefGoogle Scholar
  96. 96.
    K. Eiermann, Kolloid Z. Z. Polym. 198, 5 (1964).CrossRefGoogle Scholar
  97. 97.
    W. Knappe, P. Lohe, and R. Wutschig, Angew. Makromol. Chem. 7, 181 (1969).CrossRefGoogle Scholar
  98. 98.
    Y. Grohens, M. Brogly, C. Labbe, M.-O. David, and J. Schultz, Langmuir 14, 2929 (1998).CrossRefGoogle Scholar
  99. 99.
    O. Kahle, U. Wielsch, H. Metzner, J. Bauer, C. Uhlig, and C. Zawatzki, Thin Solid Films 313–314, 803 (1998).Google Scholar
  100. 100.
    C. B. Roth, A. Pound, S. W. Kamp, C. A. Murray, and J. R. Dutcher, Eur. Phys. J. E: Soft Matter Biol. Phys. 20, 441 (2006).CrossRefGoogle Scholar
  101. 101.
    G. Vignaud, J.-F. Bardeau, A. Gibaud, and Y. Grohens, Langmuir 21, 8601 (2005).CrossRefPubMedGoogle Scholar
  102. 102.
    P. Michel, J. Dugas, J. M. Cariou, and L. Martin, J. Macromol. Sci., Part B: Phys. 25, 379 (1986).CrossRefGoogle Scholar
  103. 103.
    H. S. Shin, Y. M. Jung, T. Y. Oh, T. Chang, S. B. Kim, D. H. Lee, and I. Noda, Langmuir 18, 5953 (2002).CrossRefGoogle Scholar
  104. 104.
    J. M. O' Reily, D. M. Teegarden, and R. A. Mosher, Macromolecules 14, 1693 (1981).CrossRefGoogle Scholar
  105. 105.
    Y. Grohens, M. Brogly, C. Labbe, and J. Schultz, Polymer 38, 5913 (1997).CrossRefGoogle Scholar
  106. 106.
    D. M. Bertoldo, A. Reyer, and M. Musso, Int. J. Manage. Sci. Eng. 7, 84 (2016).Google Scholar
  107. 107.
    M. Christoff and T. D. Z. Atvars, Macromolecules 32, 6093 (1999).CrossRefGoogle Scholar
  108. 108.
    M. K. Mundra, S. K. Donthu, V. P. Dravid, and J. M. Torkelson, Nano Lett. 7, 713 (2007).CrossRefPubMedGoogle Scholar
  109. 109.
    E. A. Friedman, A. J. Ritger, and R. D. Andrews, J. Appl. Phys. 40, 4243 (1969).CrossRefGoogle Scholar
  110. 110.
    H. R. Keymeulen, A. Diaz, H. H. Solak, C. David, F. Pfeiffer, B. D. Patterson, J. Friso van der Veen, M. P. Stoykovich, and P. F. Nealey, J. Appl. Phys. 102, 013528 (2007).CrossRefGoogle Scholar
  111. 111.
    T. D. Ignatova, A. E. Nesterov, T. D. Todosiichuk, and Yu. V. Maslak, Ukr. Khim. Zh. 77, 65 (2011).Google Scholar
  112. 112.
    A. O. Pozdnyakov, U. A. Handge, A. A. Konchits, and F. Alstädt, Tech. Phys. Lett. 36, 960 (2010).CrossRefGoogle Scholar
  113. 113.
    K. Min, M. Silberstein, and N. R. Aluru, J. Polym. Sci., Part B: Polym. Phys. 52, 444 (2014).CrossRefGoogle Scholar
  114. 114.
    M. Tsige and P. L. Taylor, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 65, 021805 (2002).CrossRefGoogle Scholar
  115. 115.
    A. A. Askadskii, Russ. Chem. Rev. 46, 589 (1977).CrossRefGoogle Scholar
  116. 116.
    A. Soldera, Macromol. Symp. 133, 21 (1998).CrossRefGoogle Scholar
  117. 117.
    M. Mohammadi, H. Fazli, M. Karevan, and J. Davoodi, Eur. Polym. J. 91, 121 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.All-Russia Research Institute of Aviation MaterialsMoscowRussia
  2. 2.Larionov Institute of Physical-Technical Problems of the North, Siberian BranchRussian Academy of SciencesYakutskRussia

Personalised recommendations