Polymer Science, Series A

, Volume 60, Issue 6, pp 866–874 | Cite as

Shape-Memory Epoxy Reinforced by Porous Graphite of Different Exfoliation Degrees

  • S. X. Zai
  • S. S. Xiong
  • L. ChenEmail author
  • Y. Wu
  • H. Zhou
  • S. W. Song


Epoxy-based shape memory polymer (ESMP) suffers from low mechanical strength, thermal stability and shape fixity ratio (Rf) which are restricting its practical applications. In order to reinforce the ESMP, in this research, porous graphite materials synthesized by low-temperature (250°C) reduction and exfoliation of graphite oxide (GO) were added into the polymer by a three-roll mill. The addition of porous graphite was proven to increase the thermal degradation temperature, storage modulus and Rf of ESMP. Different exfoliation degrees of the porous graphite resulted in different enhancement effects on the ESMP matrix. And the porous graphite with a higher exfoliation degree has a more efficient reinforcement on the polymer. Shape fixity tests indicated the porous graphite reinforced ESMP composites had higher Rf than pure ESMP. Shape memory tests showed the porous graphite with a lower exfoliation degree could delay the shape recovery of ESMP, while the porous graphite with a higher exfoliation degree resulted in a shorter shape recovery time than pure ESMP.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11498_2018_114_MOESM1_ESM.pdf (221 kb)
Supplementary material, approximately 221 KB.


  1. 1.
    K. Otsuka and C. M. Wayman, Shape Memory Materials (Cambridge University Press, Cambridge, UK, 1998).Google Scholar
  2. 2.
    Y. Xiao, S. B. Zhou, L. Wang, X. T. Zheng, and T. Gong, Composites, Part B 41, 537 (2010).CrossRefGoogle Scholar
  3. 3.
    J. S. Leng, X. L. Wu, and Y. J. Liu, Smart Mater. Struct. 18, 095031 (2009).CrossRefGoogle Scholar
  4. 4.
    T. Xie and I. A. Rousseau, Polymer 50, 1852 (2009).CrossRefGoogle Scholar
  5. 5.
    Y. P. Liu, K. Gall, M. L. Dunn, and P. McCluskey, Mech. Mater. 36, 929 (2004).CrossRefGoogle Scholar
  6. 6.
    K. Gall, M. Mikulas, N. A. Munshi, F. Beavers, and M. Tupper, J. Intell. Mater. Syst. Struct. 11, 877 (2000).CrossRefGoogle Scholar
  7. 7.
    H. B. Lu, J. H. Gou, J. S. Leng, and S. Y. Du, Smart Mater. Struct. 20, 035017 (2011).CrossRefGoogle Scholar
  8. 8.
    X. Lan, Y. J. Liu, H. B. Lv, X. H. Wang, J. S. Leng, and S. Y. Du, Smart Mater. Struct. 18, 024002 (2009).CrossRefGoogle Scholar
  9. 9.
    Q. Q. Ni, C. S. Zhang, Y. Q. Fu, G. Z. Dai, and T. Kimura, Compos. Struct. 81, 176 (2007).CrossRefGoogle Scholar
  10. 10.
    K. Gall, M. L. Dunn, Y. P. Liu, D. Finch, M. Lake, and N. A. Munshi, Acta Mater. 50, 5115 (2002).CrossRefGoogle Scholar
  11. 11.
    H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud’homme, R. Car, D. A. Saville, and I. A. Aksay, J. Phys. Chem. B 110, 8535 (2006).CrossRefGoogle Scholar
  12. 12.
    P. Steurer, R. Wissert, R. Thomann, and R. Mülhaupt, Macromol. Rapid Commun. 30, 316 (2009).CrossRefGoogle Scholar
  13. 13.
    J. R. Potts, O. Shankar, S. Murali, L. Du, and R. S. Ruoff, Compos. Sci. Technol. 74, 166 (2013).CrossRefGoogle Scholar
  14. 14.
    J. E. An and Y. G. Jeong, Eur. Polym. J. 49, 1322 (2013).CrossRefGoogle Scholar
  15. 15.
    C. C. Teng, C. C. M. Ma, C. H. Lu, S. Y. Yang, S. H. Lee, M. C. Hsiao, M. Y. Yen, K. C. Chiou, and T. M. Lee, Carbon 49, 5107 (2011).CrossRefGoogle Scholar
  16. 16.
    L. Chen, W. Li, Y. Liu, and J. Leng, J. Appl. Polym. Sci. 132, 42502 (2015).Google Scholar
  17. 17.
    W. S. Hummers, Jr. and R. E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).CrossRefGoogle Scholar
  18. 18.
    X. Yue, K. Yu, L. Ji, Z. Wang, F. Zhang, L. Qian, Y. Liu, and R. Zhang, Powder Technol. 211, 95 (2011).CrossRefGoogle Scholar
  19. 19.
    S. Shadlou, B. Ahmadi-Moghadam, and F. Taheri, Mater. Des. 59, 439 (2014).CrossRefGoogle Scholar
  20. 20.
    S. Chandrasekaran, C. Seidel, and K. Schulte, Eur. Polym. J. 49, 3878 (2013).CrossRefGoogle Scholar
  21. 21.
    S. J. Yang, T. Kim, H. Jung, and C. R. Park, Carbon 53, 73 (2013).CrossRefGoogle Scholar
  22. 22.
    K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquérol, and T. Siemieniewska, Pure Appl. Chem. 57, 603 (1985).CrossRefGoogle Scholar
  23. 23.
    J. Li, J. K. Kim, and M. L. Sham, Scr. Mater. 53, 235 (2005).CrossRefGoogle Scholar
  24. 24.
    A. V. Raghu, Y. R. Lee, H. M. Jeong, and C. M. Shin, Macromol. Chem. Phys. 209, 2487 (2008).CrossRefGoogle Scholar
  25. 25.
    D. A. Nguyen, Y. R. Lee, A. V. Raghu, H. M. Jeong, C.M. Shin, and B. K. Kim, Polym. Int. 58, 412 (2009).CrossRefGoogle Scholar
  26. 26.
    F. P. Du, E. Z. Ye, W. Yang, T. H. Shen, C. Y. Tang, X. L. Xie, X. P. Zhou, and W. C. Law, Composites, Part B 68, 170 (2015).CrossRefGoogle Scholar
  27. 27.
    W. F. Ji, K. C. Chang, M. C. Lai, C. W. Li, S. C. Hsu, T. L. Chuang, J. M. Yeh, and W. R. Liu, Composites, Part A 65, 108 (2014).CrossRefGoogle Scholar
  28. 28.
    D. Cho, S. Lee, G. Yang, H. Fukushima, and L. T. Drzal, Macromol. Mater. Eng. 290, 179 (2005).CrossRefGoogle Scholar
  29. 29.
    F. Castro, K. K. Westbrook, J. Hermiller, D. U. Ahn, Y. Ding, and H. J. Qi, J. Eng. Mater. Technol. 133, 021025 (2011).CrossRefGoogle Scholar
  30. 30.
    P. G. Seligra, F. Nuevo, M. Lamanna, and L. Famá, Composites, Part B 46, 61 (2013).CrossRefGoogle Scholar
  31. 31.
    L. Famá, V. Pettarin, C. Bernal, and S. Goyanes, Carbohydr. Polym. 83, 1226 (2011).CrossRefGoogle Scholar
  32. 32.
    L. Famá, P. Gañan, C. Bernal, and S. Goyanes, Carbohydr. Polym. 87, 1989 (2012).CrossRefGoogle Scholar
  33. 33.
    L. M. Zhao, X. Feng, Y. F. Li, and X. J. Mi, Polym. Sci., Ser. A 56, 640 (2014).CrossRefGoogle Scholar
  34. 34.
    A. Kaniyoor, T. T. Baby, and S. Ramaprabhu, J. Mater. Chem. 20, 8467 (2010).CrossRefGoogle Scholar
  35. 35.
    K. Sunitha, K. S. Santhosh Kumar, D. Mathew, and C. P. Reghunadhan Nair, Mater. Lett. 99, 101 (2013).CrossRefGoogle Scholar
  36. 36.
    I. S. Gunes, F. Cao, and S. C. Jana, Polymer 49, 2223 (2008).CrossRefGoogle Scholar
  37. 37.
    B. Das, M. Mandal, A. Upadhyay, P. Chattopadhyay, and N. Karak, Biomed. Mater. 8, 035003 (2013).CrossRefGoogle Scholar
  38. 38.
    A. Karaipekli, A. Sari, and K. Kaygusuz, Renewable Energy 32, 2201 (2007).CrossRefGoogle Scholar
  39. 39.
    S. Y. Kim, Y. J. Noh, and J. Yu, Composites, Part A 69, 219 (2015).CrossRefGoogle Scholar
  40. 40.
    A. Yu, P. Ramesh, M. E. Itkis, E. Bekyarova, and R. C. Haddon, J. Phys. Chem. C 111, 7565 (2007).CrossRefGoogle Scholar
  41. 41.
    R. H. Borgwardt and K. R. Bruce, AIChE J. 32, 239 (1986).CrossRefGoogle Scholar
  42. 42.
    K. Kobashi, H. Nishino, T. Yamada, D. N. Futaba, M. Yumura, and K. Hata, Carbon 49, 5090 (2011).CrossRefGoogle Scholar
  43. 43.
    A. Yasmin and I. M. Daniel, Polymer 45, 8211 (2004).CrossRefGoogle Scholar
  44. 44.
    S. Chhetri, N. C. Adak, P. Samanta, N. C. Murmu, and T. Kuila, Polym. Test. 63, 1 (2017).CrossRefGoogle Scholar
  45. 45.
    S. Y. Mun, H. M. Lim, and D. J. Lee, Thermochim. Acta 600, 62 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. X. Zai
    • 1
  • S. S. Xiong
    • 2
  • L. Chen
    • 2
    Email author
  • Y. Wu
    • 2
  • H. Zhou
    • 3
  • S. W. Song
    • 3
  1. 1.Department of Automotive EngineeringHenan Mechanical And Electrical Vocational CollegeZhengzhouChina
  2. 2.Department of Mechanical EngineeringHenan Mechanical and Electrical Vocational CollegeZhengzhouChina
  3. 3.Institute of Industrial TechnologyHenan Mechanical and Electrical Vocational CollegeZhengzhouChina

Personalised recommendations