Polymer Science, Series A

, Volume 60, Issue 6, pp 770–776 | Cite as

Application of Methodological Analysis for Hydrocortisone Nanocapsulation in Biodegradable Polyester and MTT Assay

  • Rahebeh Amiri DehkharghaniEmail author
  • Maryam Hosseinzadeh
  • Fatemeh Nezafatdoost
  • Jamileh Jahangiri
Medical Polymers


In recent decades, encapsulation of drugs into micro/nanoparticles of biodegradable polymers by different methods has been considered since they can gradually release drug over a particular time and reduce side effects. The present work is focused on nanocapsulation of hydrocortisone by biodegradable poly-ε- caprolactone using three methods (interfacial deposition, emulsion-diffusion and solvent displacement). The products were evaluated in terms of maximum adsorption, size distribution, zeta potential, efficiency (EE%), and were further characterized by Fourier transform infrared spectrometry and morphological studies. In vitro toxicity of this system was also studied. Depending on the physiochemical characteristics of a drug, the best method should be chosen to achieve an efficient entrapment of the drug without reducing its pharmacological activity. According to the obtained results, we compared these procedures and found that interfacial deposition gives more EE%, negative zeta potential, less particle size as well as suitable polydispersity indices. Furthermore, this study demonstrated that hydrocortisone did not show any toxic effect at lower concentrations in our formulations. In this respect, the development of a simple, safe and reproducible technique that allows an effective drug encapsulation can be a fundamental goal for nanotechnology.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Novak and D. Y. Leung, Curr. Opin. Immunol. 23, 778(2011).Google Scholar
  2. 2.
    P. J. Kertes and S. G. Coupland, Can. J. Ophthalmol. 40, 573 (2005).CrossRefGoogle Scholar
  3. 3.
    P. Ferrante, A. Ramsey, C. Bunce, and S. Lightman, Clin. Exp. Ophthalmol. 32, 563 (2004).CrossRefGoogle Scholar
  4. 4.
    J. D. Ference and A. R. Last, Am. Fam. Physician 79, 135 (2009).Google Scholar
  5. 5.
    J. Zhang and E. Smith, J. Pharm. Sci. 100, 896 (2011).CrossRefGoogle Scholar
  6. 6.
    M. Bartneck, F. M. Peters, K. T. Warzecha, M. Bienert, L. V. Bloois, C. Trautwein, T. Lammers, and F. Tacke, Nanomedicine (N. Y. NY, U. S.) 10, 1209 (2014).Google Scholar
  7. 7.
    T. Sakai, T. Isbibara, M. Higaki, G. Akiyama, and H. Tsuneoka, Invest. Ophthalmol. Visual Sci. 52, 1516 (2011).CrossRefGoogle Scholar
  8. 8.
    A. Kumari, S. K. Yadav, and S. C. Yadav, Colloids Surf., B 75, 1 (2010).CrossRefGoogle Scholar
  9. 9.
    V. Rahmani, K. Shams, and H. Rahmani, J. Chem. Eng. Process Technol. 6, 228 (2015).Google Scholar
  10. 10.
    S. Feiz, A. H. Navarchian, and O. MoiniJazani, Iran. Polym. J. 27, 193 (2018).CrossRefGoogle Scholar
  11. 11.
    K. Madhaiyan, R. Sridhar, S. Sundarrajan, J. R. Venugopal, and S. Ramakrishna, Int. J. Pharm. 444, 70 (2013).CrossRefGoogle Scholar
  12. 12.
    P. Karuppuswamy, J. R. Venugopal, B. Navaneethan, A. L. Laiva, and S. Ramakrishna, Mater. Lett. 141, 180 (2015).CrossRefGoogle Scholar
  13. 13.
    A. Amin, M. Samy, S. H. Abd El-Alim, A. E. G. Rabia, and M. M. H Ayoub, Int. J. Polym. Mater. Polym. Biomater. 67, 942 (2017).CrossRefGoogle Scholar
  14. 14.
    M. Okada, Prog. Polym. Sci. 27, 87 (2002).CrossRefGoogle Scholar
  15. 15.
    L. C. Nair and C. T. Laurencin, Prog. Polym. Sci. 32, 762 (2007).CrossRefGoogle Scholar
  16. 16.
    R. Othman, G. T. Vladisavljevic, Z. K. Nagy, and R. G. Holdich, Langmuir 32, 10685 (2016).CrossRefGoogle Scholar
  17. 17.
    S. Guinebretiere, S. Brinco, V. S. Teodorescu, and M. G. Blanchin, Mater. Sci. Eng., C 21, 137 (2002).CrossRefGoogle Scholar
  18. 18.
    V. Karavelidis, D. Giliopoulos, E. Karavas, and D. Bikiaris, Eur. J. Pharm. Sci. 41, 636 (2010).CrossRefGoogle Scholar
  19. 19.
    I. Dragostin, O. Dragostin, A. Pelin, C. Grigore, and C. L. Zamfir, J. Macromol. Sci., Part A: Pure Appl. Chem. 54, 489 (2017).CrossRefGoogle Scholar
  20. 20.
    T. Hammady, A. El-Gindy, E. Lejmi, R. S. Dhanikula, P. Moreau, and P. Hildgen, Int. J. Pharm. 369, 185 (2009).CrossRefGoogle Scholar
  21. 21.
    C. Rosado, C. Silva, and C. P. Reis, Pharm. Dev. Technol. 18,710 (2013).Google Scholar
  22. 22.
    N. Sharma, P. Madan, and S. Lin, Asian. J. Pharm. Sci. 11, 404 (2016).CrossRefGoogle Scholar
  23. 23.
    M. P. Alves, A. L. Scarrone, M. Santos, A. R. Pohlmanr, and S. Guterres, Int. J. Pharm. 341, 215 (2007).CrossRefGoogle Scholar
  24. 24.
    T. Jung, A. Breitenbach, and T. Kissel, J. Controlled Release 3, 157 (2000).CrossRefGoogle Scholar
  25. 25.
    U. Bilati, E. Allemann, and E. Doelker, J. Microencapsulation 22, 205 (2005).CrossRefGoogle Scholar
  26. 26.
    T. Mosmann, J. Immunol. Methods. 65, 55 (1983).CrossRefGoogle Scholar
  27. 27.
    H. Fessi, F. Puisieux, and J. P. Devissaguet, EUR Patent No. 0274961 A1 (1988).Google Scholar
  28. 28.
    D. Quintanar-Guerrero, H. Fessi, E. Doelker, and E. Allemann, PCT Patent No. W09904766A (1999).Google Scholar
  29. 29.
    H. Fessi, F. Puisieux, J. P. Devissaguet, N. Ammoury, and S. Benita, Int. J. Pharm. 55, R1 (1989).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Rahebeh Amiri Dehkharghani
    • 1
    Email author
  • Maryam Hosseinzadeh
    • 1
  • Fatemeh Nezafatdoost
    • 1
  • Jamileh Jahangiri
    • 1
  1. 1.Department of Chemistry, Central Tehran BranchIslamic Azad UniversityTehranIran

Personalised recommendations