Polymer Science, Series A

, Volume 60, Issue 6, pp 894–901 | Cite as

Rheological Properties of Acrylonitrile Terpolymer Solutions Synthesized by Different Methods

  • I. Yu. SkvortsovEmail author
  • R. V. Toms
  • N. I. Prokopov
  • E. V. Chernikova
  • V. G. Kulichikhin


Series of polyacrylonitrile terpolymers with molecular weights of (7–20) × 104 have been synthesized in dimethylsulfoxide using classical radical polymerization and reversible addition-fragmentation chain transfer (RAFT) polymerization. The effect of the synthesis method on the rheological behavior of dilute and concentrated solutions of the resulting copolymers has been analyzed. No differences have been found in the viscous properties and viscoelastic behavior of the concentrated solutions in the temperature range of 20–80°C. However, viscometry of the dilute solutions made it possible to detect a difference in the interaction between the solvent and macromolecules of the copolymers obtained by these methods. The copolymers differ in the values of the second virial coefficient, which indicates that the interaction of the solvent and polymer is specific to the synthesis method. This phenomenon seems to be caused by different branching of chains in the copolymer and/or its compositional heterogeneity. For dilute solutions, it was possible to construct a single generalized concentration dependence of reduced viscosity in the coordinates of the Martin equation. Transition to the region of concentrated solutions required an introduction of yet another parameter that describes the effective density of the mesh network, namely, the ratio of the current solution concentration to the crossover concentration. This approach made it possible to construct a generalized dependence of viscosity in the entire concentration range of solutions of polyacrylonitrile copolymers.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Shlyahtin, I. E. Nifant’ev, V. V. Bagrov, D. A. Lemenovskii, A. N. Tavtorkin, and P. S. Timashev, Green Chem. 16, 1344 (2014).CrossRefGoogle Scholar
  2. 2.
    Y. Eom and B. C. Kim, Polymer 55 (10), 2570 (2014).CrossRefGoogle Scholar
  3. 3.
    S. H. Park, S. G. Lee, and S. H. Kim, J. Mater. Sci. 48 (20), 6952 (2013).CrossRefGoogle Scholar
  4. 4.
    V. G. Kulichikhin, I. Yu. Skvortsov, M. I. Mironova, A. N. Ozerin, T. S. Kurkin, A. K. Berkovich, E. I. Frenkin, and A. Ya. Malkin, Adv. Polym. Technol. 37 (4), 21761 (2018).Google Scholar
  5. 5.
    Z. Fu, B. Liu, Y. Deng, J. Ma, C. Cao, J. Wang, and H. Zhang, J. App. Polym. Sci. 133 (38), 43919 (2016).CrossRefGoogle Scholar
  6. 6.
    Q. Y. Wu, X. N. Chen, L. S. Wan, and Z. K. Xu, J. Phys. Chem. B 116 (28), 8321.Google Scholar
  7. 7.
    V. G. Kulichikhin, S. O. Ilyin, M. V. Mironova, A. K. Berkovich, I. E. Nifant’ev, and A. Ya. Malkin, Adv. Polym. Technol. 37 (4), 21758 (2018).Google Scholar
  8. 8.
    W. Gao, F. She, J. Zhang, L. F. Dumee, K. L. Tung, P. D. Hodgson, and L. Kong, J. Mol. Liq. 217 (219), 45 (2016).CrossRefGoogle Scholar
  9. 9.
    H. Pan, J. Yang, S. Wang, Z. Xiong, W. Cai, and J. Liu, J. Mater. Chem. A 3 (26), 13827 (2015).CrossRefGoogle Scholar
  10. 10.
    Y. Eom, C. Kim, and B. C. Kim, Macromol. Res. 25 (3), 262 (2017).CrossRefGoogle Scholar
  11. 11.
    C. D. Han and M. S. Jhon, J. Appl. Polym. Sci. 32 (3), 3809 (1986).CrossRefGoogle Scholar
  12. 12.
    W. Li, J. Hao, P. Zhou, Y. Liu, C. Lu, and Z. Zhang, J. Appl. Polym. Sci. 134 (41), 45405 (2017).CrossRefGoogle Scholar
  13. 13.
    S. O. Ilyin, V. G. Kulichikhin, and A. Y. Malkin, Polym. Sci., Ser. A 55 (8), 503 (2013).CrossRefGoogle Scholar
  14. 14.
    A. Malkin, S. Ilyin, T. Roumyantseva, and V. Kulichikhin, Macromolecules 46 (1), 257 (2013).CrossRefGoogle Scholar
  15. 15.
    A. V. Semakov, I. Y. Skvortsov, V. G. Kulichikhin, and A. Ya. Malkin, JETP Lett. 101 (10), 690 (2015).CrossRefGoogle Scholar
  16. 16.
    A. Y. Malkin, A. V. Semakov, I. Y. Skvortsov, P. Zatonskikh, V. G. Kulichikhin, A. V. Subbotin, and A. N. Semenov, Macromolecules 50 (20), 8231 (2017).CrossRefGoogle Scholar
  17. 17.
    N. I. Kuz’min, A. V. Makarov, T. I. Podol’skaya, and E. A. Rogova, Fibre Chem. 43 (1), 104 (2011).CrossRefGoogle Scholar
  18. 18.
    L. Tan, J. Pan, and A. Wan, Colloid Polym. Sci. 290 (4), 289 (2012).CrossRefGoogle Scholar
  19. 19.
    N. M. Bol’bit, E. A. Dubova, V. R. Duflot, and V. A. Chevychelov, Polym. Sci., Ser. A 53 (4), 289 (2011).CrossRefGoogle Scholar
  20. 20.
    S. O. Ilyin, E. V. Chernikova, Y. V. Kostina, and V. G. Kulichikhin, Polym. Sci., Ser. A 57 (4), 494 (2015).CrossRefGoogle Scholar
  21. 21.
    E. A. Busyreva, I. I. Ryskina, V. P. Viryukov, and A. S. Mramornova, Fibre Chem. 23 (3), 177 (1992).CrossRefGoogle Scholar
  22. 22.
    Controlled and Living Polymerizations: From Mechanisms to Materials, Ed. by A. H. E. Müller and K. Matyjaszewski (Wiley-VCH, Weinheim, 2009).Google Scholar
  23. 23.
    E. Chernikova, A. Morozov, E. Leonova, E. Garina, V. Golubev, C. Bui, and B. Charleux, Macromolecules 37 (17), 6329 (2004).CrossRefGoogle Scholar
  24. 24.
    Handbook of Radical Polymerization, Ed. by K. Matyjaszewski and T. P. Davis (Wiley-Intersci., Hoboken, 2002).Google Scholar
  25. 25.
    J. Kaur, K. Millington, and J. Y. Cai, J. Appl. Polym. Sci. 133 (48), 44273 (2016).CrossRefGoogle Scholar
  26. 26.
    E. V. Chernikova, P. S. Terpugova, E. S. Garina, and V. B. Golubev, Polym. Sci., Ser. A 49 (2), 108 (2007).CrossRefGoogle Scholar
  27. 27.
    W. B. Russel, J. Chem. Soc. 80, 31 (1984).Google Scholar
  28. 28.
    E. V. Chernikova, R. V. Toms, N. I. Prokopov, V. R. Duf lot, A. V. Plutalova, S. A. Legkov, and V. I. Gomzyak, Polym. Sci., Ser. B 59 (1), 28 (2017).CrossRefGoogle Scholar
  29. 29.
    A. Ya. Malkin and G. O. Botvinnik, J. Polym. Sci., Polym. Phys. Ed. 11 (6), 1055 (1973).Google Scholar
  30. 30.
    V. G. Kulichikhin, Mol. Cryst. Liq. Cryst. 169, 51 (1989).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. Yu. Skvortsov
    • 1
    Email author
  • R. V. Toms
    • 2
  • N. I. Prokopov
    • 2
  • E. V. Chernikova
    • 1
    • 3
  • V. G. Kulichikhin
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  2. 2.MIREA—Russian Technological UniversityLomonosov State University of Fine Chemical TechnologyMoscowRussia
  3. 3.Department of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations