Advertisement

Polymer Science, Series A

, Volume 60, Issue 6, pp 796–804 | Cite as

Morphological Features and Rheological Properties of Combined Cellulose and Polyacrylonitrile Solutions in N-Methylmorpholine-N-oxide

  • L. K. GolovaEmail author
  • I. S. Makarov
  • M. I. Vinogradov
  • L. K. Kuznetsova
  • V. G. Kulichikhin
Polymer Blends

Abstract

The combined solutions of cellulose and PAN in N-methylmorpholine-N-oxide at total polymer contents of 18 and 25% are obtained by solid-phase dissolution. The investigation of phase composition and morphology of these systems via optical methods shows that the solutions of cellulose and PAN in N-methylmorpholine-N-oxide are incompatible and form emulsions. The action of deformation on the emulsions leads to the appearance of orientational effects. If PAN predominates in droplets of the dispersed phase of cellulose solutions, this leads to the formation of fibrillar structures under shear stress, while in the case of PAN dispersion medium double emulsions are formed, in which internal droplets of the cellulose solution are most easily extended under shear. The rheological behavior of the combined systems is the direct consequence of structural-morphological transformations proceeding during deformation of the system. An analysis of the morphological and rheological features of heterophase systems reveals the concentration interval for the moldability of composite fibers from spinning emulsions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. K. Golova, V. G. Kulichikhin, and S. P. Papkov, Vysokomol. Soedin., Ser. A 28 (9), 1795 (1986).Google Scholar
  2. 2.
    L. K. Golova, O. E. Borodina, L. K. Kuznetsova, T. A. Lyubova, and T. B. Krylova, Fibre Chem. 32 (4), 243 (2000).Google Scholar
  3. 3.
    C. Woodings, Lenzinger Ber. 80, 106 (2001).Google Scholar
  4. 4.
    D. Eichinger and M. Eibl, Lenzinger Ber. 75, 41 (1995).Google Scholar
  5. 5.
    V. K. Thakur, M. K. Thakur, and R. K. Gupta, Hybrid Polymer Composite Materials: Structure and Chemistry (Woodhead Publ., Cambridge, 2017).Google Scholar
  6. 6.
    D. Ingildeev, F. Hermanutz, K. Bredereck, and F. Effenberger, Macromol. Mater. Eng. 297 (6), 585 (2012).CrossRefGoogle Scholar
  7. 7.
    V. I. Kostikov, Fibre Science and Technology (Springer, Dordrecht, 1995).CrossRefGoogle Scholar
  8. 8.
    V. G. Kulichikhin, L. K. Golova, I. S. Makarov, G. N. Bondarenko, A. K. Berkovich, and S. O. Ilyin, Polym. Sci., Ser. C 58 (1), 74 (2016).CrossRefGoogle Scholar
  9. 9.
    K. Y. Lim, K. J. Yoon, and B. C. Kim, Eur. Polym. J. 39 (11), 2115 (2003).CrossRefGoogle Scholar
  10. 10.
    N. V. Mikhailov, Z. V. Ukhanova, and T. I. Karetina, Khim.Volokna, No. 1, 18 (1959).Google Scholar
  11. 11.
    N. V. Mikhailov, B. N. Smirnova, and G. D. Nessonova, Fibre Chem. 2 (4), 314 (1971).CrossRefGoogle Scholar
  12. 12.
    D. L. Johnson, US Patent No. 3508941 (1970).Google Scholar
  13. 13.
    C. C. McCorsley III, US Patent No. 4144080 (1979).Google Scholar
  14. 14.
    C. C. McCorsley III, US Patent No. 4246221 (1981).Google Scholar
  15. 15.
    L. K. Golova, RF Patent No. 1645308 (1992).Google Scholar
  16. 16.
    L. K. Golova, RF Patent No. 2075560 (1997).Google Scholar
  17. 17.
    I. S. Makarov, L. K. Golova, L. K. Kuznetsova, A. V. Shlyakhtin, I. E. Nifant’ev, and V. G. Kulichikhin, RF Patent No. 2541473 S2 (2015).Google Scholar
  18. 18.
    A. M. Bochek, E. N. Popova, Y. N. Sazanov, V. K. Lavrent’ev, A. A. Murav’ev, and N. P. Novoselov, Russ. J. Appl. Chem. 87 (5), 634 (2014).CrossRefGoogle Scholar
  19. 19.
    I. S. Makarov, L. K. Golova, L. K. Kuznetsova, A. V. Rebrov, A. K. Berkovich, I. Yu. Skvortsov, and V. G. Kulichikhin, Russ. J. Gen. Chem. 87 (6), 1351 (2017).CrossRefGoogle Scholar
  20. 20.
    V. Kulichikhin, L. Golova, I. Makarov, G. Bondarenko, V. Makarova, S. Ilyin, I. Skvortsov, and A. Berkovich, Eur. Polym. J. 92, 326 (2017).CrossRefGoogle Scholar
  21. 21.
    A. V. Shlyahtin, I. E. Nifant’ev, V. V. Bagrov, D. A. Lemenovskii, A. N. Tavtorkin, and P. S. Timashev, Green Chem. 16, 1344 (2014).CrossRefGoogle Scholar
  22. 22.
    L. K. Golova, I. S. Makarov, E. V. Matukhina, and V. G. Kulichikhin, Polym. Sci., Ser. A 52 (11), 1209 (2010).CrossRefGoogle Scholar
  23. 23.
    G. V. Vinogradov, Vysokomol. Soedin., Ser. A 13 (2), 294 (1971).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. K. Golova
    • 1
    Email author
  • I. S. Makarov
    • 1
  • M. I. Vinogradov
    • 1
  • L. K. Kuznetsova
    • 1
  • V. G. Kulichikhin
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations