Advertisement

Petroleum Chemistry

, Volume 59, Issue 11, pp 1256–1263 | Cite as

Dry Reforming of Methane over Nanosized Tungsten Carbide Powders Obtained by Mechanochemical and Plasma-Mechanochemical Methods

  • R. R. Grigoryan
  • S. G. Aloyan
  • V. R. Harutyunyan
  • S. D. ArsentevEmail author
  • L. A. Tavadyan
Article
  • 14 Downloads

Abstract

The catalytic activity of tungsten carbide WC and a mixture of tungsten carbides (WC + W2C) obtained by mechanochemical and plasma-mechanochemical methods in the reaction of dry reforming of methane at a pressure of 650 Torr, the ratio CH4 : CO2 = 1 : 1 in the temperature range of 400–960°C was studied. It was shown that the nanopowder of tungsten carbide, with an average particle size of 40 nm, produced by plasma-mechanochemical method, has a higher catalytic activity in the reaction of dry reforming of methane than the catalyst prepared by mechanochemical method. It was also established that with a decrease in the average particle size from 40 to 18 nm, the activity of the catalyst based on WС, obtained by the plasma-mechanochemical method increases and at 950°C the conversion of methane reaches 55%.

Keywords:

dry reforming of methane nanoparticle catalysis tungsten carbide 

Notes

ACKNOWLEDGMENTS

The authors would like to acknowledge non-profit organization “Analysis Research and Planning for Armenia” (ARPA Institute, U.S.A.) for provision of chromatograph Agilent G3581 490 Micro GC.

CONFLICT OF INTERESTS

The authors declare no conflict of interest requiring disclosure in this article.

INFORMATION ABOUT AUTHORS

Grigoryan Rita Rubeni—PhD, Senior researcher of A.B. Nalbandyan Institute of Chemical Physics of National Academy of Sciences of Republic of Armenia. ORCID: https://orcid.org/0000-0003-1217-2224

Aloyan Samvel Georgii—PhD, Head of laboratory “Innovative technologies” of M.G. Manvelyan Institute of General and Inorganic Chemistry of National Academy of Sciences of Republic of Armenia. ORCID: https://orcid.org/0000-0003-1174-7479

Harutyunyan Venera Rafiki —researcher of M.G. Manvelyan Institute of General and Inorganic Chemistry of National Academy of Sciences of Republic of Armenia. ORCID: https://orcid.org/0000-0003-3769-7801

Arsentev Sergey Dmitrievich—Doctor of Sciences, Head of laboratory “Catalysis” of A.B. Nalbandyan Institute of Chemical Physics of National Academy of Sciences of Republic of Armenia. ORCID: https://orcid.org/0000-0002-9146-3304

Tavadyan Levon Agasii—Doctor of Sciences, Scientific Head of A.B. Nalbandyan Institute of Chemical Physics of National Academy of Sciences of Republic of Armenia. ORCID: https://orcid.org/0000-0002-2548-5839

REFERENCES

  1. 1.
    R. A. Sheldon, Chemicals from Synthesis Gas: Catalytic Reactions of CO 2 and H 2 (Springer-Science + Business Media, Dordrecht, 1983)Google Scholar
  2. 2.
    P. van Beurden, ECN-I-04-003 (2004).Google Scholar
  3. 3.
    O. V. Krylov, Ross. Khim. Zh. 46 (1), 19 (2000).Google Scholar
  4. 4.
    R. Shang, X. Guo, Sh. Mu, et al., Int. J. Hydrogen Energy 36, 4900 (2011).CrossRefGoogle Scholar
  5. 5.
    M. S. Fan, A. Z. Abdullah, and S. Bhatia, Int. J. Hydrogen Energy 36, 4875 (2011).CrossRefGoogle Scholar
  6. 6.
    R. R. Grigoryan, L. A. Vartikyan, R. A. Mnatsakanyan, and A. R. Zurnachyan, Khim. Zh. Arm. 63, 535 (2010).Google Scholar
  7. 7.
    J. B. Claridge, A. P. E. York, A. J. Brungs, et al., J. Catal. 180, 85 (1998).CrossRefGoogle Scholar
  8. 8.
    Z. Yao, J. Jiang, Y. Zhao, et al., RSC Adv. 6, 19944 (2016).CrossRefGoogle Scholar
  9. 9.
    G. Aldashukurova, A. V. Mironenko, Z. A. Mansurov, et al., Eurasian Chem. Tech. J. 12, 97 (2010).CrossRefGoogle Scholar
  10. 10.
    O. U. Osazuwa and C. K. Cheng, J. Clean. Prod. 148, 202 (2017).CrossRefGoogle Scholar
  11. 11.
    B. Abdullah, N. A. Abd Ghani, and D.-V. N. Vo, J. Clean. Prod. 162, 170 (2017).CrossRefGoogle Scholar
  12. 12.
    N. A. K. Aramouni, J. G. Touma, B. A. Tarboush, et al., Renew. Sust. Energy Rev. 82, 2570 (2018).CrossRefGoogle Scholar
  13. 13.
    J. M. Leimert, J. Karl, and M. Dillig, Processes 5 (4), 82 (2017).CrossRefGoogle Scholar
  14. 14.
    K. Mondal, S. Sasmal, S. Badgandi, et al., Environ. Sci. Pollut. Res. 23, 22267 (2016).CrossRefGoogle Scholar
  15. 15.
    R. Debek, M. Motak, T. Grzybek, et al., Catalysts 7, 32 (2017).CrossRefGoogle Scholar
  16. 16.
    S. Penner, Catalysts 7, 334 (2017).CrossRefGoogle Scholar
  17. 17.
    A. G. Dedov, A. S. Loktev, V. P. Danilov, et al., Pet. Chem. 58, 418 (2018).CrossRefGoogle Scholar
  18. 18.
    Q. Yan, Y. Lu, F. To, et al., Catal. Sci. Technol. 5, 3270 (2015).CrossRefGoogle Scholar
  19. 19.
    Y. Gao, J. Jiang, Y. Meng, et al., Energy Convers. Manage. 171, 1332018.V.Google Scholar
  20. 20.
    Nanotechnologies, Ed. by Yu. A. Tret’yakov (Fizmatlit, Moscow, 2008) [in Russian].Google Scholar
  21. 21.
    A. I. Gusev, Nanomaterials, Nanostructures, and Nanotechnologies (Fizmatlit, Moscow, 2009) [in Russian].Google Scholar
  22. 22.
    R. R. Grigoryan, L. A. Vartikyan, L. A. Tavadyan, et al., Kinet. Catal. 55, 224 (2014).CrossRefGoogle Scholar
  23. 23.
    J. Ma, N. Sun, X. Zhang, et al., Catal. Today 148, 221 (2009).CrossRefGoogle Scholar
  24. 24.
    J. Guo, H. Lou, H. Zhao, et al., Appl. Catal., A. 273, 75 (2004).Google Scholar
  25. 25.
    D. Liu, W. Cheo, Y. Wen, et al., Catal. Today 154, 229 (2010).CrossRefGoogle Scholar
  26. 26.
    J. Sehested, C. J. H. Jacobsen, S. Rokni, and J. R. Rostrup-Nielsen, J. Catal. 201, 206.Google Scholar
  27. 27.
    Z. Hou, P. Chen, H. Fang, et al., Int. J. Hydrogen Energy 31, 555 (2006).CrossRefGoogle Scholar
  28. 28.
    C. Wang, Y. Zhang, Y. Wang, and Y. Zhao, Chin. J. Chem. 35, 113 (2017).CrossRefGoogle Scholar
  29. 29.
    Z. Bian and S. Kawi, J. CO2 Util. 18, 345 (2017).Google Scholar
  30. 30.
    N. Aider, F. Touahra, F. Bali, et al., Int. J. Hydrogen Energy 43, 8256 (2018).CrossRefGoogle Scholar
  31. 31.
    G. Zhang, J. Liu, Y. Xu, and Y. Sun, Int. J. Hydrogen Energy 43, 15030 (2018).CrossRefGoogle Scholar
  32. 32.
    A. Abdulrasheed, A. A. Jalil, Y. Gambo, et al., Renew. Sust. Energy Rev. 108, 175 (2019).CrossRefGoogle Scholar
  33. 33.
    Q. Yan, Y. Lu, F. To, et al., Catal. Sci. Technol. 5, 3270 (2015).CrossRefGoogle Scholar
  34. 34.
    V. S. Arutyunov, Ross. Khim. Zh. 45 (1), 55 (2001).Google Scholar
  35. 35.
    A. Calka and D. Wexler, J. Metastable Nanocryst. Mater. 20–21, 111 (2004).Google Scholar
  36. 36.
    D. Wexler, A. Calka, and D. Dunne, J. Metastable Nanocryst. Mater. 26, 16 (2005).Google Scholar
  37. 37.
    A. Calka, D. Wexler, and A. Y. Mosbah, J. Alloys Compd. 434–435, 463 (2006).Google Scholar
  38. 38.
    V. V. Molchanov and R. A. Buyanov, Usp. Khim. 69, 476 (2000).CrossRefGoogle Scholar
  39. 39.
    V. A. Liopo and V. V. Voina, X-ray Diffractometry (GrGU Grodno, 2003) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • R. R. Grigoryan
    • 1
  • S. G. Aloyan
    • 2
  • V. R. Harutyunyan
    • 2
  • S. D. Arsentev
    • 1
    Email author
  • L. A. Tavadyan
    • 1
  1. 1.Nalbandyan Institute of Chemical Physics NAS of Republic of ArmeniaYerevanRepublic of Armenia
  2. 2.M.G. Manvelyan Institute of General and Inorganic Chemistry NAS of Republic of ArmeniaYerevanRepublic of Armenia

Personalised recommendations