Advertisement

Petroleum Chemistry

, Volume 59, Issue 8, pp 887–893 | Cite as

Features of Selective Mass Transfer in the Adsorption Stage of a Hybrid Membrane–Adsorption System for Creating an Artificial Breathing Atmosphere

  • A. A. TishinEmail author
  • V. N. Gurkin
  • N. I. Laguntsov
Article
  • 1 Downloads

Abstract

A mathematical model of the adsorption process in the adsorption stage of the system is proposed. The mathematical model has been tested on a binary mixture of nitrogen and oxygen used as an example. The data obtained by numerical simulation agree within the limits of error with experimental data obtained earlier. A scheme of a hybrid membrane–adsorption system for creating an artificial breathing atmosphere in a closed room, consisting of an adsorption unit in the first stage and a membrane unit in the second stage of separation, has been proposed. In the hybrid system, the feed stream drawn into the compressor comprises air from the external environment and air coming from the ventilated room and the adsorbent is regenerated by the reject stream of the membrane unit.

Keywords:

artificial atmosphere ventilation adsorption PSA hybrid technologies membrane gas separation air separation sorption 

Notes

FUNDING

This work was supported by the Ministry of Education and Science of the Russian Federation, agreement no. 14.576.21.0097 (project unique identifier RFMEFI57617X0097).

REFERENCES

  1. 1.
    Yu. A. Rakhmanin, S. E. Shibanov, and S. V. Kozulya, Gig. Sanit. 95, 325 (2016).Google Scholar
  2. 2.
    E. S. Andreeva and S. S. Andreev, Bezopasnost Tekhnogen. Prir. Sist., Nos. 1–2, 45 (2018).Google Scholar
  3. 3.
    B. A. Dyshko and A. I. Golovachev, Vestn. Sport. Nauki, No. 1, 7 (2011).Google Scholar
  4. 4.
    A. Arsen’ev, Santekh. Otopl. Konditsion., No. 11, 76 (2011).Google Scholar
  5. 5.
    V. A. Devisilov, Occupational Safety (Mashinostroenie, Moscow, 2003) [in Russian].Google Scholar
  6. 6.
    A. A. Tishin, V. N. Gurkin, N. I. Laguntsov, and I. M. Kurchatov, Pet. Chem. 58, 338 (2018).CrossRefGoogle Scholar
  7. 7.
    Yu. I. Shumyatskii, Industrial Adsorption Processes (KolosS, Moscow, 2009) [in Russian].Google Scholar
  8. 8.
    E. I. Akulinin, D. S. Dvoretskii, and S. I. Dvoretskii, Vestn. Kazansk. Tekhnol. Univ.19, 108 (2016).Google Scholar
  9. 9.
    T. Hocker, A. Rajendran, and M. Mazzotti, Langmuir 19, 1254 (2003).CrossRefGoogle Scholar
  10. 10.
    S. A. Skvortsov, Candidate’s Dissertation in Engineering (Tambov, 2005).Google Scholar
  11. 11.
    N. S. Polyakov and G. A. Petukhova, Ross. Khim. Zh. 39 (6), 7 (1995).Google Scholar
  12. 12.
    E. A. Makeev, V. L. Zelenko, and L. I. Kheifets, Moscow Univ. Chem. Bull. 62, 136 (2007).CrossRefGoogle Scholar
  13. 13.
    A. K. Akulov, Doctoral Dissertation in Engineering (St. Petersburg, 1996).Google Scholar
  14. 14.
    A. N. Kudinov, I. M. Kurchatov, and N. I. Laguntsov, Theor. Found. Chem. Eng. 48, 352 (2014).CrossRefGoogle Scholar
  15. 15.
    A. A. Tishin, N. I. Laguntsov, and I. Kurchatov, Phys. Procedia 72, 122 (2015).CrossRefGoogle Scholar
  16. 16.
    N. V. Kel’tsev, Basics of Adsorption Technology (Khimiya, Moscow, 1978) [in Russian]. Google Scholar
  17. 17.
    A. A. Tishin, V. N. Gurkin, N. I. Laguntsov, and I. M. Kurchatov, Pet. Chem. 58, 55 (2018).Google Scholar
  18. 18.
    S. U. Rege and R. T. Yang, Ind. Eng. Chem. Res. 36, 5358 (1997).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. A. Tishin
    • 1
    • 2
    Email author
  • V. N. Gurkin
    • 1
  • N. I. Laguntsov
    • 1
  1. 1.Public Joint Stock Company AquaserviceMoscowRussia
  2. 2.National Research Nuclear University MEPhIMoscowRussia

Personalised recommendations