Advertisement

Petroleum Chemistry

, Volume 59, Issue 8, pp 903–909 | Cite as

Determination of the Service Life of Zeolite Oligomerization Catalysts by Accelerated Deactivation Testing

  • A. G. PopovEmail author
  • A. V. Efimov
  • A. V. Kleimenov
  • S. E. Kuznetsov
  • I. I. Ivanova
Article
  • 13 Downloads

Abstract

Both freshly prepared and steamed MFI zeolite catalysts have been tested for service life. It has been shown that the zeolite cycle length is increased from 7 to 60 days by steaming. In contrast, comparative testing under mild conditions at 300°С has demonstrated low on-stream stability of the catalyst after steaming. Thermogravimetric analysis data indicate different mechanisms of coke formation on samples at 300°С: polyaromatic coke is produced on the fresh sample and predominantly polyaliphatic coke forms on the steamed sample. It has been found that correct comparison of oligomerization catalysts differing in acidity requires a temperature no less than 380°С, which ensures the formation of polyaromatic coke on both catalysts. As a result of the study, a rapid procedure for accelerated deactivation testing has been developed that makes it possible to obtain data comparable with those of long-term service life tests.

Notes

REFERENCES

  1. 1.
    J. Cejka, H. van Bekkum, A. Corma, and F. Schueth, Stud. Surf. Sci. Catal. 168, 898 (2007).Google Scholar
  2. 2.
    V. N. Ipatieff, B. B. Corson, and G. Egloff, Ind. Eng. Chem. 27, 1077 (1935).CrossRefGoogle Scholar
  3. 3.
    R. Schmidt, M. B. Welch, and B. B. Randolph, Energy Fuels 22, 1148 (2008).CrossRefGoogle Scholar
  4. 4.
    H. Owen, S. A. Tabak, and B. S. Wright, US Patent No. 4 633 027 (1986).Google Scholar
  5. 5.
    J. A. Martens, R. Ravishankar, I. E. Mishin, and P. A. Jacobs, Angew. Chem. Int. Ed. Engl. 39, 4376 (2000).CrossRefGoogle Scholar
  6. 6.
    C. T. O’Connor and M. Kojima, Catal. Today 6, 329 (1990).CrossRefGoogle Scholar
  7. 7.
    A. Coelho, G. Caeiro, M. L. F. Lemos, and F. R. Ribeiro, Fuel 111, 449 (2013).CrossRefGoogle Scholar
  8. 8.
    J. W. Yoon, J. H. Lee, J. S. Chang, et al., Catal. Commun. 8, 967 (2007).CrossRefGoogle Scholar
  9. 9.
    H. Kim, D. Kim, Y. K. Park, and J. K. Jeon, Res. Chem. Intermediates 44, 3823 (2018).CrossRefGoogle Scholar
  10. 10.
    J. C. Groen, L. A. Peffer, J. A. Moulijn, and J. Pérez-Ramírez, Chem.-Eur. J. 11, 4983 (2005).CrossRefGoogle Scholar
  11. 11.
    L. H. Ong, M. Domok, R. Olindo, et al., Microporous Mesoporous Mater. 164, 9 (2012).CrossRefGoogle Scholar
  12. 12.
    A. Samoson, E. Lippmaa, G. Engelhardt, et al., Chem. Phys. Lett. 134, 589 (1987).CrossRefGoogle Scholar
  13. 13.
    V. I. Erofeev, L. V. Adyaeva, and N. V. Ryabova, Russ. J. Appl. Chem. 76, 95 (2003).CrossRefGoogle Scholar
  14. 14.
    J. C. Groen, W. Zhu, S. Brouwer, et al., J. Am. Chem. Soc. 129, 355 (2007).CrossRefGoogle Scholar
  15. 15.
    M. Guisnet, L. Costa, and F. R. Ribeiro, J. Mol. Catal., A 305, 69 (2009).Google Scholar
  16. 16.
    H. S. Cerqueira, G. Caeiro, L. Costa, and F. R. Ribeiro, J. Mol. Catal., A 292, 1 (2008).Google Scholar
  17. 17.
    Y. Fan, Y. Cai, X. Li, et al., J. Ind. Eng. Chem. 46, 139 (2017).CrossRefGoogle Scholar
  18. 18.
    A. G. Popov, D. A. Fedosov, I. I. Ivanova, et al., Pet. Chem. 56, 237 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. G. Popov
    • 1
    Email author
  • A. V. Efimov
    • 1
  • A. V. Kleimenov
    • 2
  • S. E. Kuznetsov
    • 3
  • I. I. Ivanova
    • 1
    • 4
  1. 1.Faculty of Chemistry, Moscow State UniversityMoscowRussia
  2. 2.PAO Gazprom Neft PublSt.-PetersburgRussia
  3. 3.AO Gazpromneft-MNPZ (Moscow Refinery)MoscowRussia
  4. 4.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia

Personalised recommendations