Petroleum Chemistry

, Volume 59, Issue 8, pp 918–924 | Cite as

Comparative Study of Catalysts Based on Zeolites BEA and MWW in Benzene Alkylation with Propylene

  • O. A. PonomarevaEmail author
  • T. O. Bok
  • E. P. Andriako
  • A. V. Shkuropatov
  • E. E. Knyazeva
  • I. V. Dobryakova
  • I. I. Ivanova


The physicochemical properties of catalysts synthesized from zeolites of the BEA and MWW framework types using pseudoboehmite as a binder and their catalytic activity in benzene alkylation with propylene in the gas-phase and liquid-phase modes have been studied. It has been found that the MWW-based catalyst is characterized by stronger acidity in terms of both amount and strength of acid sites; however, the catalytic activity of this sample is inferior to that of zeolite BEA. The observed effect is attributed to the higher accessibility of acid sites in the three-dimensional system of zeolite BEA. With respect to some parameters, such as cumene selectivity and on-stream stability, zeolite MWW is superior to zeolite BEA; the difference is attributed to the structural features of these zeolites.



This work was supported by the Ministry of Science and Higher Education of the Russian Federation (project unique identifier RFMEFI60717X0167).


  1. 1.
    T. F. Degnan, Jr., C. M. Smith, and Ch. R. Venkat, Appl. Catal., A 221, 283 (2001).Google Scholar
  2. 2.
    G. Sastre, C. R. A. Catlow, and A. Corma, J. Phys. Chem. B 103, 5187 (1999).CrossRefGoogle Scholar
  3. 3.
    C. Perego and P. Ingallina, Catal. Today 73, 3 (2002).CrossRefGoogle Scholar
  4. 4.
    A. Corma, V. Martinez-Soria, and E. Schnoeveld, J. Catal. 192, 163 (2000).CrossRefGoogle Scholar
  5. 5.
    S. Gomm, R. Glaser, and J. Weitkamp, Stud. Surf. Sci. Catal. 154, 760 (2004).Google Scholar
  6. 6.
    G. C. Laredo, R. Quintana-Solorzano, J. J. Castillo, et al., Appl. Catal., A 454, 37 (2013).Google Scholar
  7. 7.
    G. Bellussi, G. Pazzuconi, C. Perego, et al., J. Catal. 157, 227 (1995).CrossRefGoogle Scholar
  8. 8.
    G. C. Laredo, J. J. Castillo, J. Nawarrete-Bolanos, et al., Appl. Catal., A 413–414, 140 (2012).Google Scholar
  9. 9.
    G. Buelna, M. Ulutagay-Kartin, and T. M. Menoff, Chem. Eng. Commun. 193, 606 (2006).CrossRefGoogle Scholar
  10. 10.
    S. L. Lawton, M. E. Leonowicz, R. D. Partridge, et al., Microporous Mesoporous. Mater. 23, 109 (1998).CrossRefGoogle Scholar
  11. 11.
    T. O. Bok, E. P. Andriako, E. E. Knyazeva, et al., Pet. Chem. 58, 833 (2018).CrossRefGoogle Scholar
  12. 12.
    U. J. Etim, P. Bai, Y. Wang, et al., Appl. Catal., A 571, 137 (2019).Google Scholar
  13. 13.
    T. O. Bok, E. D. Onuchin, A. V. Zabil’skaya, et al., Pet. Chem. 56, 1160 (2016).CrossRefGoogle Scholar
  14. 14.
    V. Fornes and A. Corma, Microporous Mesoporous Mater. 90, 73 (2006).CrossRefGoogle Scholar
  15. 15.
    Verified Syntheses of Zeolitic Materials, Ed. by S. Mintova and N. Barrier (XRD Patterns), 3rd Ed. (International Zeolite Association, 2016).Google Scholar
  16. 16.
    E. M. Moroz, K. I. Shefer, D. A. Zyuzin, and A. N. Shmakov, J. Struct. Chem. 52, 326 (2011).CrossRefGoogle Scholar
  17. 17.
    F. Zhao, Y. Zhang, S. Geng, et al., Adv. Mater. Res. 549, 283 (2012).CrossRefGoogle Scholar
  18. 18.
    O. A. Ponomareva, E. E. Knyazeva, A. V. Shkuropatov, Iet al., Pet. Chem. 57, 1147 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • O. A. Ponomareva
    • 1
    • 2
    Email author
  • T. O. Bok
    • 2
  • E. P. Andriako
    • 2
    • 3
  • A. V. Shkuropatov
    • 1
  • E. E. Knyazeva
    • 1
    • 2
  • I. V. Dobryakova
    • 1
  • I. I. Ivanova
    • 1
    • 2
  1. 1.Faculty of Chemistry, Moscow State UniversityMoscowRussia
  2. 2.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia
  3. 3.Mendeleev University of Chemical Technology, Higher Chemical College, Russian Academy of SciencesMoscowRussia

Personalised recommendations