Petroleum Chemistry

, Volume 59, Issue 8, pp 845–853 | Cite as

Preparation of Binderless Silicoaluminophosphates by Vapor-Phase Crystallization of Kaolin–Phosphoric Acid Grains

  • E. E. KnyazevaEmail author
  • T. O. Bok
  • B. A. Kolozhvari
  • I. V. Dobryakova
  • I. I. Ivanova


Transformations of granules based on kaolin and phosphoric acid under conditions of vapor-phase crystallization in a mixture of water vapor and a structure-directing agent have been studied. It has been shown that silicoaluminophosphate granules obtained in the presence of dipropylamine, triethylamine, or tetramethylammonium hydroxide as a structure-directing agent consist of a shell formed by dense nonporous cristobalite, tridymite, and berlinite phases and the core made mainly of microporous crystalline silicoaluminophosphates. The formation of the shell, which ensures the strength of the silicoaluminophosphate granules, is due to the interaction of steam with the material of the granules at the initial stages of vapor-phase crystallization. It has been established that the selectivity of the structure-directing action of the amines under vapor-phase crystallization conditions basically corresponds to the template hydrothermal synthesis. It has been assumed that the specific features of the structure-directing action of dimethylamine during vapor-phase transport synthesis are due to its low boiling point, which ensures the primary contact of the granules with template, rather than water molecules. As a result, the products of the transformation of granules in the presence of a mixture of dimethylamine and water do not contain dense nonporous phases and are cocrystallized silicoaluminophosphate and calcium aluminosilicate with the gismondine structure.



The work was performed in the framework of the State task of the Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences.


  1. 1.
    N. Rajic, J. Serb. Chem. Soc. 70, 371 (2005).CrossRefGoogle Scholar
  2. 2.
    W. Xu, J. Dong, and J. J. Li, J. Chem. Soc., Chem. Commun., 131 (1990).Google Scholar
  3. 3.
    M. Razavian, R. Halladj, and S. Askari, Rev. Adv. Mater. Sci. 29, 83 (2011).Google Scholar
  4. 4.
    T. O. Bok, E. E. Knyazeva, and I. I. Ivanova, Russ. J. Appl. Chem. 91, 946 (2018).CrossRefGoogle Scholar
  5. 5.
    Y. Hirota, K. Murata, S. Tanaka, et al., Mater. Chem. Phys. 123, 507 (2010).CrossRefGoogle Scholar
  6. 6.
    S. Askari, Z. Sedighi, and R. Halladj, Microporous Mesoporous Mater. 197, 229 (2014).CrossRefGoogle Scholar
  7. 7.
    C.-Y. Di, X.F. Li, P. Wang, et al., Pet. Sci. 14, 203 (2017).CrossRefGoogle Scholar
  8. 8.
    C.-M. Song, H. Yang, Y. Wang, et al., Asia-Pacif. J. Chem. Eng. 11, 846 (2016).Google Scholar
  9. 9.
    C.-M. Song, Y. Feng, and L.-L. Ma, Microporous Mesoporous Mater. 147, 205 (2012).CrossRefGoogle Scholar
  10. 10.
    B. Chen and Y. Huang, Microporous Mesoporous Mater. 123, 71 (2009).CrossRefGoogle Scholar
  11. 11.
    X.-L. Wei, X.-H. Lu, T.-J. Zhang, et al., Microporous Mesoporous Mater. 214, 80 (2015).CrossRefGoogle Scholar
  12. 12.
    L. Zhang, D. Chen, H.-Y. Nie, and Y. Huang, Microporous Mesoporous Mater. 175, 147 (2013).CrossRefGoogle Scholar
  13. 13.
    H. K. Hall, J. Am. Chem. Soc. 79, 5441 (1957).CrossRefGoogle Scholar
  14. 14.
    A. J. Hernández-Maldonado and R. T. Yang, Langmuir 19, 2193 (2003).CrossRefGoogle Scholar
  15. 15.
    D. E. Akporiaye, I. M. Dahl, H. B. Mostad, and R. Wendelbo, Zeolites 17, 517 (1996).CrossRefGoogle Scholar
  16. 16.
    X. T. Xu, J. P. Zhai, I. L. Li, and S. C. Ruan, Appl. Mech. Mater. 275–277, 1737 (2013).CrossRefGoogle Scholar
  17. 17.
    C.-M. Chen and J.-M. Jehng, J. Catal. Lett. 85, 73 (2003).CrossRefGoogle Scholar
  18. 18.
    H. Qisheng and X. Ruren, J. Chem. Soc., Chem. Commun., 783 (1990).Google Scholar
  19. 19.
    H. Weyda and H. Lechert, Studies in Surface Science and Catalysis, vol. 49: Zeolites: Facts, Figures, Future, Ed. by P. A. Jacobs and R. A. van Santen (Elsevier, Amsterdam, 1989), p. 169.Google Scholar
  20. 20.
    M. Castellano, A. Turturro, P. Riani, et al., Appl. Clay Sci. 48, 446 (2010).CrossRefGoogle Scholar
  21. 21.
    X. Zhang, J. Wang, J. Zhong, et al., Microporous Mesoporous Mater. 108, 13 (2008).CrossRefGoogle Scholar
  22. 22.
    J. Chen, L. Li, G. Yang, and R. Xu, J. Chem. Soc., Chem. Commun., 1217 (1989).Google Scholar
  23. 23.
    B. Wang, Z. Tian, P. Li, et al., Mater. Res. Bull. 44, 2258 (2009).CrossRefGoogle Scholar
  24. 24.
    B. Zhou, B. L. Sherriff, and T. Wang, Am. Mineral. 94, 865 (2009).CrossRefGoogle Scholar
  25. 25.
    C. A. Fyfe, K. C. Wong-Moon, and Y. Huang, Zeolites 16, 50 (1996).CrossRefGoogle Scholar
  26. 26.
    J. Rocha, J. Klinowski, P. J. Barrie, et al., Solid State Nucl. Magn. Res. 1, 217 (1992).CrossRefGoogle Scholar
  27. 27.
    D. Zhou, J. Xu, J. Yu, et al., J. Phys. Chem. B 10, 2131 (2006).CrossRefGoogle Scholar
  28. 28.
    M. Meftah, W. Oueslati, and A. Ben Haj Amara, Phys. Procedia 2, 1081 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. E. Knyazeva
    • 1
    • 2
    Email author
  • T. O. Bok
    • 1
  • B. A. Kolozhvari
    • 1
    • 2
  • I. V. Dobryakova
    • 2
  • I. I. Ivanova
    • 1
    • 2
  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia
  2. 2.Faculty of Chemistry, Moscow State UniversityMoscowRussia

Personalised recommendations