Advertisement

Petroleum Chemistry

, Volume 59, Issue 8, pp 761–769 | Cite as

Combining Phase Separation with Pseudomorphic Transformation for the Control of the Pore Architecture of Functional Materials: A Review

  • François FajulaEmail author
  • Anne GalarneauEmail author
Article
  • 5 Downloads

Abstract

Chemical phase separation and pseudomorphic transformation are very powerful tools for fine tuning the porous architecture of inorganic oxides. In this short review the basic principles of the preparation of centimetric bodies made of zeolites is introduced. The synthesis of monoliths with homogeneous distributions of interconnected macropores with skeleton made of SOD, LTA and FAU crystals is described. Their unique hierarchical porous texture featuring the structural micropores, intercrystalline mesopores and flow-through macropores leads to remarkable hydrodynamic behavior in separation, catalysis and ion exchange processes operated in continuous-flow mode. In the base-catalyzed carbon-carbon bond formation, productivities twice those achievable with fixed-beds of packed particles are observed. In the capture of strontium present in radioactive effluents their efficiency is three orders of magnitude that of traditional powder in batch.

Keywords:

spinodal separation pseudomorphic crystallization monolitic hierarchical zeolites catalysis strontium capture 

Notes

ACKNOWLEDGMENTS

The authors thank the St Nikon Foundation for constant and stimulating support.

REFERENCES

  1. 1.
    A. Galarneau, B. Sachse, C.-H. Said, et al., C. R. Chim. 19, 231 (2016).CrossRefGoogle Scholar
  2. 2.
    P. R. Aravind, P. Shajesh, G. D. Soraru, and K. G. K. Warrier, J. Sol-Gel Sci. Technol. 54, 105 (2010).CrossRefGoogle Scholar
  3. 3.
    S.-W. Hwang, H.-H. Jung, S-H. Hyun, and Y.-S. Ahn, J. Sol-Gel Sci. Technol. 41, 139 (2007).CrossRefGoogle Scholar
  4. 4.
    A. Guyomard-Lack, B. Said, N. Dupré, A. Galarneau, and J. Le Bideau, New J. Chem., 40, 4269 (2016).CrossRefGoogle Scholar
  5. 5.
    Y. Belmoujahid, M. Bonne, Y. Scudeller, et al., Microporous Mesoporous Mater. 201, 124 (2015).CrossRefGoogle Scholar
  6. 6.
    T.-Y. Wei, T.F. Chang, and S.Y. Lu, J. Am. Ceram. Soc. 90, 2003 (2007).CrossRefGoogle Scholar
  7. 7.
    K. Nakanishi, N. Soga, J. Non-Cryst. Solids 1, 139 (1992).Google Scholar
  8. 8.
    K. Nakanishi, J. Porous Mater. 4, 67 (1997).CrossRefGoogle Scholar
  9. 9.
    T. Tanaka, H. Kobayashi, N. Ishizuka, et al., J. Chromatogr. A 35, 965 (2002).Google Scholar
  10. 10.
    https://upload.wikimedia.org/wikipedia/commons/9/9b/CahnHilliard_Animation.gif.Google Scholar
  11. 11.
    K. Nakanishi, H. Shikata, N. Ishizuka, et al., J. High Resolut. Chromatogr. 13, 106 (2000).CrossRefGoogle Scholar
  12. 12.
    A. Galarneau, J. Iapichella, D. Brunel, et al., J. Sep. Sci. 29, 844 (2006).CrossRefGoogle Scholar
  13. 13.
    G. Puy, R. Roux, C. Demesmay, et al., J. Chromatogr. A. 150, 1160 (2007)Google Scholar
  14. 14.
    A. Galarneau, Z. Abid, B. Said, et al., Inorganics 4, 9 (2016).CrossRefGoogle Scholar
  15. 15.
    Y. Tokudome, K.Fujita, K. Nakanishi, et al., Chem. Mater. 19, 3393 (2007).CrossRefGoogle Scholar
  16. 16.
    J. Konishi, K. Fujita, K. Nakanishi, and K. Hirao, Chem. Mater. 18, 6069 (2006).CrossRefGoogle Scholar
  17. 17.
    N. Linares, S. Hartmann, A. Galarneau, and P. Barbaro, ACS Catal. 2, 2194 (2012).CrossRefGoogle Scholar
  18. 18.
    Y. Zhu, T. Shilizu, T. Kitashima, et al., New J. Chem. 39, 2444 (2015).CrossRefGoogle Scholar
  19. 19a.
    K. Kanamori, and K. Nakanishi, J. Mater. Chem. 15, 3776 (2005);CrossRefGoogle Scholar
  20. 19b.
    Chem. Soc. Rev. 40, 754 (2011).Google Scholar
  21. 20.
    X. Lu, K. Kanamori, and K Nakanishi, J. Sol-Gel Sci. Technol. 89, 29 (2019)CrossRefGoogle Scholar
  22. 21.
    Y. Hara, K. Kanamori, K. Morisato, et al., J. Mater. Chem. A 6, 9041 (2018).CrossRefGoogle Scholar
  23. 22.
    A. Sachse, A. Galarneau, B. Coq, and F. Fajula, New J. Chem. 35, 259 (2012).CrossRefGoogle Scholar
  24. 23.
    A. El Kadib, R. Chimenton, A. Sachse, et al., Angew. Chem. Int. Ed. Engl. 48, 4969 (2009).CrossRefGoogle Scholar
  25. 24.
    A. Sachse, V. Hulea, A. Finiels, et al., J. Catal. 287, 62 (2012)CrossRefGoogle Scholar
  26. 25.
    A. Sachse, R. Ameloot, B. Coq, et al., Chem. Commun. 48, 4749 (2012)CrossRefGoogle Scholar
  27. 26.
    A. Sachse, N. Linares, P. Barbaro, et al., Dalton Trans. 42, 1378 (2013).CrossRefGoogle Scholar
  28. 27.
    P. Boscaro, T. Cacciaguerra, D. Cot, et al., Microporous Mesoporous Mater. 280, 37 (2019).CrossRefGoogle Scholar
  29. 28.
    K. Szymańska, W. Pudło, J. Mrowiec-Białoń, et al., Microporous Mesoporous Mater. 170, 75 (2013)CrossRefGoogle Scholar
  30. 29.
    P. Forte, A. Sachse, M. Maes, et al., RSC Adv. 4, 1045 (2014)CrossRefGoogle Scholar
  31. 30.
    J. Sinlankas, Mineralogy (Van Nostrand Reinhold, New York, 1964).Google Scholar
  32. 31.
    G. C. Garcia, Bocamina 2, 38 (1996).Google Scholar
  33. 32.
    T. Martin, A. Galarneau, F. Di Renzo, et al., Angew. Chem. Int. Ed. Engl. 41, 2590 (2002).CrossRefGoogle Scholar
  34. 33.
    B. Lefevre, A. Galarneau, J. Iapichella, et al., Chem. Mater.17, 601 (2005).CrossRefGoogle Scholar
  35. 34.
    C. Petitto, A. Galarneau, M.-F. Driole, et al., Chem. Mater. 15, 2120 (2005).CrossRefGoogle Scholar
  36. 35.
    M. F. Ottaviani, A. Moscatelli, D. Desplantier-Giscard, et al., J. Phys. Chem. B 108, 12 123 (2004).CrossRefGoogle Scholar
  37. 36.
    F. Fajula, Dalton Trans., 291 (2007).Google Scholar
  38. 37.
    T. Martin, A. Galarneau, F. Di Renzo, et al., Chem. Mater. 16, 1725 (2004).CrossRefGoogle Scholar
  39. 38.
    A. Galarneau, J. Iapichella, D. Brunel, et al., J. Sep. Sci., 29, 844 (2006).CrossRefGoogle Scholar
  40. 39.
    S. M. Brown and G.M. Woltermann, US Patent No. 4 235 753 (1980).Google Scholar
  41. 40.
    J. P. McWilliams, US Patent No. 5 145 659 (1992).Google Scholar
  42. 41.
    W. Schwieger, M. Rauscher, F. Scheffer, et al., in Proceedings of 12th International Zeolite Conference, Baltimore, USA, 1849 (1998).Google Scholar
  43. 42.
    D. Plee, US Patent No. 6 264 881 (2001).Google Scholar
  44. 43.
    M. Manko, J. Vittenet, J. Rodriguez, et al., Microporous Mesoporous Mater. 176, 145 (2013).CrossRefGoogle Scholar
  45. 44.
    M. W. Anderson, S. M. Holmes, N. Hanif, and C. S. Cundy, Angew. Chem. Int. Ed. Engl. 39, 2707 (2000).CrossRefGoogle Scholar
  46. 45.
    Y. Wang, Y. Tang, A. Dong, et al., J. Mater. Chem. 6, 1812 (2002).CrossRefGoogle Scholar
  47. 46.
    M. Choi, K. Na and R. Ryoo, Chem. Commun., 2845 (2009)Google Scholar
  48. 47.
    F. Xia, J. Brugger, Y. Ngothai, et al., Cryst. Growth Des. 9, 4902 (2009).CrossRefGoogle Scholar
  49. 48.
    Q. Lei, T. Zhao, F. Liet al., Chem. Commun., 1769 (2006).Google Scholar
  50. 49.
    A. Sachse, A. Galarneau, F. Di Renzo, et al., Chem. Mater. 22, 4123 (2010).CrossRefGoogle Scholar
  51. 50.
    S. R. Lee, Y. H. Son, A. Julbe, and J. H. Choy, Thin Solid Films 92, 495 (2006)Google Scholar
  52. 51.
    G. V. Shanbhag, M. Choi, J. Kim, and R. Ryoo, J. Catal. 264, 88 (2009).CrossRefGoogle Scholar
  53. 52.
    A. Sachse, A. Galarneau, F. Fajula, et al., Microporous Mesoporous Mater. 140, 58 (2011).CrossRefGoogle Scholar
  54. 53.
    Verified Syntheses of Zeolitic Materials, Ed. by H. Robson (Elsevier, Amsterdam, 2001).Google Scholar
  55. 54.
    A. Sachse, A. Merceille, Y. Barré, et al., Microporous Mesoporous Mater. 164, 251 (2012).CrossRefGoogle Scholar
  56. 55.
    B. Said, T. Cacciaguera, F. Fajula, and A. Galarneau, Microporous Mesoporous Mater. 227, 176 (2016).CrossRefGoogle Scholar
  57. 56.
    B. Said, A. Grandjean, Y. Barre, et al., Microporous Mesoporous Mater. 232, 39 (2016).CrossRefGoogle Scholar
  58. 57.
    Y. Didi, B. Said, T. Cacciaguerra, et al., Microporous Mesoporous Mater. 281, 57 (2019).CrossRefGoogle Scholar
  59. 58.
    R. Kohms, C.P. Haas, A. Hötzel, et al., React. Chem. Eng. 3, 353 (2018).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institut Charles Gerhardt Montpellier, University of Montpellier, ENSCM, CNRSMontpellierFrance

Personalised recommendations