Petroleum Chemistry

, Volume 59, Issue 8, pp 802–821 | Cite as

Modern Research in the Field of Zeolites and Zeolite-Like Materials: A Review of the Works of the Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences

  • M. V. BukhtiyarovaEmail author
  • G. V. Echevsky


The review presents the data of the research in the field of zeolites and zeolite-like materials which have been performed at various laboratories of the Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences for the last 15 years. The first part of the review is devoted to the investigation of the properties of FeZSM-5 zeolites in the activation of methane upon its oxidation by nitrous oxide and influence of the reaction conditions on the yield of methanol. The second part of the review shows the possibility for isomorphic replacement of aluminum ions by iron ions in ZSM-5 zeolites to obtain hierarchical FeZSM-5 zeolites using polystyrene beads as the template. The third part is devoted to the application of NMR spectroscopy for the determination of the acidity of zeolites and mechanism of joint aromatization reaction of methane and light alkanes. The fourth part presents the data on the investigation of the influence of the synthesis conditions of the corresponding SAPO-31 silicoaluminophosphate on the catalytic properties of Pt(Pd)/SAPO-31 materials.



  1. 1.
    J. Pérez-Ramérez, C. H. Christensen, K. Egeblad, et al., Chem. Soc. Rev. 37, 2530 (2008).CrossRefGoogle Scholar
  2. 2.
    Y. Roman-Leshkov and M. E. Davis, ACS Catal. 1, 1566 (2011).CrossRefGoogle Scholar
  3. 3.
    S. Brandenberger, O. Krocher, A. Tissler, and R. Althoff, Catal. Rev.–Sci. Eng. 50, 492 (2008).CrossRefGoogle Scholar
  4. 4.
    M. G. Clerici, Top. Catal. 13, 373 (2000).CrossRefGoogle Scholar
  5. 5.
    S. Wang and Y. Peng, Chem. Eng. J. 156, 11 (2010).CrossRefGoogle Scholar
  6. 6.
    J. L. Agudelo, E. J. M. Hensen, S. A. Giraldo, and L. J. Hoyos, Energy Fuels 30, 616 (2016).CrossRefGoogle Scholar
  7. 7.
    M. O. Kazakov, K. A. Nadeina, I. G. Danilova, et al., Catal. Today 305, 117 (2018).CrossRefGoogle Scholar
  8. 8.
    C. Zschiesche, D. Himsl, R. Rakoczy, et al., Chem. Eng. Technol. 41, 199 (2018).CrossRefGoogle Scholar
  9. 9.
    O. V. Kikhtyanin, A. V. Toktarev, I. D. Reznichenko, and G. V. Echevsky, Pet. Chem. 49, 74 (2009).CrossRefGoogle Scholar
  10. 10.
    J. Weitkamp and L. Puppe, Catalysis and Zeolites: Fundamentals and Applications (Springer, Berlin, 1999).CrossRefGoogle Scholar
  11. 11.
    C. S. Cundy and P. A. Cox, Chem. Rev. 103, 663 (2003).CrossRefGoogle Scholar
  12. 12.
    J. Shi, Y. Wang, W. Yang, Y. Tang, Z. Xie, Chem. Soc. Rev. 44, 8877 (2015).CrossRefGoogle Scholar
  13. 13.
    L. E. Sandoval-Diaz, J. A. González-Amaya, and C. A. Trujillo, Microporous Mesoporous Mater. 215, 229 (2015).CrossRefGoogle Scholar
  14. 14.
    E. G. Derouane, J. C. Védrine, R. Ramos Pinto, et al., Catal. Rev. Sci. Eng. 55, 454 (2013).CrossRefGoogle Scholar
  15. 15.
    J. A. Lercher and A. Jentys, Stud. Surf. Sci. Catal. 168, 435 (2007).CrossRefGoogle Scholar
  16. 16.
    H. Pfeifer, D. Freude, and M. Hunger, Zeolites 5, 274 (1985).CrossRefGoogle Scholar
  17. 17.
    A. Auroux, Top. Catal 19, 205 (2002).CrossRefGoogle Scholar
  18. 18.
    L. Rodríguez-González, F. Hermes, M. Bertmer, E. Rodríguez-Castellón, et al., Appl. Catal., A 328, 174 (2007).Google Scholar
  19. 19.
    J. A. Lercher, C. Gründling, and G. Eder-Mirth, Catal. Today 27, 353 (1996).CrossRefGoogle Scholar
  20. 20.
    A. G. Stepanov, Zeolites and Zeolite-like Materials, Ed. by B. Sels and L. Kustov (Elsevier, Amsterdam, 2016), p. 137.Google Scholar
  21. 21.
    D. Xu, H. Lv, and B. Liu, Front. Chem. 6, 550 (2018).CrossRefGoogle Scholar
  22. 22.
    G. Kokotailo, S. Lawton, and D. Olson, Nature 272, 437 (1978).CrossRefGoogle Scholar
  23. 23.
    J. Wang, L. Liu, X. Dong, L. Alfilfil, C. E. Hsiung, Z. Liu, Y. Han, Chem. Mater. 30, 6361 (2018).CrossRefGoogle Scholar
  24. 24.
    F. Goodarzi, L. Q. Kang, F. R. Wang, et al., ChemCatChem 10, 1566 (2018).CrossRefGoogle Scholar
  25. 25.
    C. Pagis, A. R. Morgado Prates, D. Farrusseng, et al., Chem. Mater. 28, 5205 (2016).CrossRefGoogle Scholar
  26. 26.
    J. Kärger and D. Ruthven, Diffusion in Zeolites and Other Microporous Solids (Wiley, New York, 1992).Google Scholar
  27. 27.
    V. Meynen, P. Cool, and E. F. Vansant, Microporous Mesoporous Mater. 104, 26 (2007).CrossRefGoogle Scholar
  28. 28.
    A. Galadima and O. Muraza, J. Ind. Eng. Chem 61, 265 (2018).CrossRefGoogle Scholar
  29. 29.
    A. V. Shkuropatov, E. E. Knyazeva, O. A. Ponomareva, and I. I. Ivanova, Pet. Chem. 58, 815 (2018).CrossRefGoogle Scholar
  30. 30.
    C. J. H. Jacobsen, C. Madsen, J. Houzvicka, et al., J. Am. Chem. Soc. 122, 7116 (2000).CrossRefGoogle Scholar
  31. 31.
    F. S. Xiao, L. Wang, C. Yin, et al., Angew. Chem., Int. Ed. Engl. 45, 3090 (2006).CrossRefGoogle Scholar
  32. 32.
    A. Zecchina, M. Rivallan, G. Berlier, et al., Phys. Chem. Chem. Phys. 9, 3483 (2007).CrossRefGoogle Scholar
  33. 33.
    G. D. Pirngruber, M. Luechinger, P. K. Roy, et al., J. Catal. 224, 429 (2004).CrossRefGoogle Scholar
  34. 34.
    J. Perez-Ramirez, M. S. Kumar, and A. Bruckner, J. Catal. 223, 13 (2004).CrossRefGoogle Scholar
  35. 35.
    I. Yuranov, D. A. Bulushev, A. Renken, and L. Kiwi-Minsker, J. Catal. 227, 138 (2004).CrossRefGoogle Scholar
  36. 36.
    G. Centi, S. Perathoner, T. Torre, and M. G. Verduna, Catal. Today 55, 61 (2000).CrossRefGoogle Scholar
  37. 37.
    G. I. Panov, E. V. Starokon, L. V. Pirutko, et al., J. Catal. 254, 110 (2008).CrossRefGoogle Scholar
  38. 38.
    P. K. Roy and G. D. Pirngruber, J. Catal. 227, 164 (2004).CrossRefGoogle Scholar
  39. 39.
    K. A. Dubkov, N. S. Ovanesyan, A. A. Shteinman, et al., J. Catal. 207, 341 (2002).CrossRefGoogle Scholar
  40. 40.
    E. Berrier, O. Ovsister, E. V. Kondratenko, et al., J. Catal. 249, 67 (2007).CrossRefGoogle Scholar
  41. 41.
    K. T. Dinh, M. M. Sullivan, P. Serna, et al., ACS Catal. 8, 8306 (2018).CrossRefGoogle Scholar
  42. 42.
    V. S. Chernyavsky, L. V. Pirutko, A. K. Uriarte, et al., J. Catal. 245, 466 (2007).CrossRefGoogle Scholar
  43. 43.
    E. V. Starokon, A. A. Vedyagin, L. V. Pirutko, and I. V. Mishakov, J. Porous Mater. 22, 521 (2015).CrossRefGoogle Scholar
  44. 44.
    E. V. Starokon, M. V. Parfenov, S. S. Arzumanov, et al., J. Catal. 300, 47 (2013).CrossRefGoogle Scholar
  45. 45.
    P. Tang, Q. Zhu, Z. Wua, and D. Ma, Energy Environ. Sci. 7, 2580 (2014).CrossRefGoogle Scholar
  46. 46.
    E. V. Starokon, M. V. Parfenov, L. V. Pirutko, et al., J. Phys. Chem. C 115, 2155 (2011).CrossRefGoogle Scholar
  47. 47.
    M. V. Parfenov, E. V. Starokon, L. V. Pirutko, and G. I. Panov, J. Catal. 318, 14 (2014).CrossRefGoogle Scholar
  48. 48.
    V. I. Sobolev, K. A. Dubkov, O. V. Panna, and G. I. Panov, Catal. Today 24, 251 (1995).CrossRefGoogle Scholar
  49. 49.
    E. V. Kuznetsova, E. N. Savinov, L. A. Vostrikova, and V. N. Parmon, Appl. Catal., B 51, 165 (2004).CrossRefGoogle Scholar
  50. 50.
    K. A. Sashkina, V. S. Labko, N. A. Rudina, Vet al., J. Catal. 299, 44 (2013).CrossRefGoogle Scholar
  51. 51.
    K. A. Sashkina, E. V. Parkhomchuk, N. A. Rudina, and V. N. Parmon, Microporous Mesoporous Mater. 189, 181 (2014).CrossRefGoogle Scholar
  52. 52.
    E. V. Parkhomchuk, V. N. Parmon, and K. A. Sashkina, Pet. Chem. 56, 197 (2016).CrossRefGoogle Scholar
  53. 53.
    K. Fajerwerg and H. Debellefontaine, Appl. Catal., B 10, L229 (1996).CrossRefGoogle Scholar
  54. 54.
    J. H. Ramirez, C. A. Costa, L. M. Madeira, et al., Appl. Catal. B 71, 44 (2007).CrossRefGoogle Scholar
  55. 55.
    T. X. H. Le, M. Drobek, M. Bechelany, et al., Microporous Mesoporous Mater. 278, 64 (2019).CrossRefGoogle Scholar
  56. 56.
    S. Adityosulindro, C. Julcour, and L. Barthe, J. Environ. Chem. Eng. 6, 5920 (2018).CrossRefGoogle Scholar
  57. 57.
    S. E. Malykhin, V. F. Anufrienko, E. J. M. Hansen, et al., J. Struct. Chem. 48, 855 (2007).CrossRefGoogle Scholar
  58. 58.
    J. A. Zazo, J. A. Casas, A. F. Mohedano, and J. J. Rodriguez, Water Res. 43, 4063 (2009).CrossRefGoogle Scholar
  59. 59.
    M. V. Luzgin, V. A. Rogov, S. S. Arzumanov, et al., Catal. Today 144, 265 (2009).CrossRefGoogle Scholar
  60. 60.
    M. V. Luzgin, A. A. Gabrienko, V. A. Rogov, et al., J. Phys. Chem. C 114, 21 555 (2010).CrossRefGoogle Scholar
  61. 61.
    A. A. Gabrienko, S. S. Arzumanov, D. Freude, and A. G. Stepanov, J. Phys. Chem. C 114, 12 681 (2010).CrossRefGoogle Scholar
  62. 62.
    M. V. Luzgin, A. V. Toktarev, V. N. Parmon, and A. G. Stepanov, J. Phys. Chem. C 117, 22 867 (2013).CrossRefGoogle Scholar
  63. 63.
    A. A. Gabrienko, S. S. Arzumanov, M. V. Luzgin, and A. G. Stepanov, J. Phys. Chem. C 119, 24 910 (2015).CrossRefGoogle Scholar
  64. 64.
    A. A. Gabrienko, S. S. Arzumanov, A. V. Toktarev, et al., ACS Catal. 7, 1818 (2017).CrossRefGoogle Scholar
  65. 65.
    G. V. Echevsky, E. G. Kodenev, O. V. Kikhtyanin, and V. N. Parmon, Appl. Catal., A 258, 159 (2004).Google Scholar
  66. 66.
    V. R. Choudhary, A. K. Kinage, and T. V. Choudhary, Science 275, 1286 (1997).CrossRefGoogle Scholar
  67. 67.
    L. B. Pierella, G. A. Eimer, and O. A. Anunziata, Stud. Surf. Sci. Catal. 119, 235 (1998).CrossRefGoogle Scholar
  68. 68.
    H. T. Zheng, H. L. Zhu, H. Lou, et al., Chin. J. Catal. 26, 49 (2005).Google Scholar
  69. 69.
    O. A. Anunziata, G. A. Eimer, and L. B. Pierella, Catal. Lett. 58, 235 (1999).CrossRefGoogle Scholar
  70. 70.
    A. G. Stepanov, S. S. Arzumanov, A. A. Gabrienko, et al., J. Catal. 253, 11 (2008).CrossRefGoogle Scholar
  71. 71.
    V. B. Kazansky, I. R. Subbotina, N. Rane, et al., Phys. Chem. Chem. Phys. 7, 3088 (2005).CrossRefGoogle Scholar
  72. 72.
    Y. G. Kolyagin, V. V. Ordomsky, Y. Z. Khimyak, et al., J. Catal. 238, 122 (2006).CrossRefGoogle Scholar
  73. 73.
    P. He, A. Wang, S. Meng, G. M. Bernard, et al., Catal. Today 323, 94 (2019).CrossRefGoogle Scholar
  74. 74.
    D. Austin, A. Wang, J. H. Harrhy, et al., Catal. Sci. Technol. 8, 5104 (2018).CrossRefGoogle Scholar
  75. 75.
    A. A. Gabrienko, I. G. Danilova, S. S. Arzumanov, et al., J. Phys. Chem. C 122, 25386 (2018).CrossRefGoogle Scholar
  76. 76.
    A. A. Gabrienko, I. G. Danilova, S. S. Arzumanov, et al., Microporous Mesoporous Mater. 131, 210 (2010).CrossRefGoogle Scholar
  77. 77.
    O. V. Kikhtyanin, G. A. Urzuntsev, A. B. Ajupov, et al., Stud. Surf. Sci. Catal. 158, 1771 (2005).CrossRefGoogle Scholar
  78. 78.
    O. V. Kikhtyanin, A. V. Toktarev, and G. V. Echevsky, Stud. Surf. Sci. Catal. 162, 897 (2006).CrossRefGoogle Scholar
  79. 79.
    O. V. Kikhtyanin, A. V. Toktarev, A. B. Ayupov, and G. V. Echevsky, Appl. Catal., A 378, 96 (2010).Google Scholar
  80. 80.
    J. Yang, O. V. Kikhtyanin, W. Wu, et al., Microporous Mesoporous Mater. 15, 14 (2012).CrossRefGoogle Scholar
  81. 81.
    G. V. Echevsky, W. Qi, A. V. Toktarev, and W. Wei, Pet. Chem. 56, 244 (2016).CrossRefGoogle Scholar
  82. 82.
    O. V. Kikhtyanin and G. V. Echevskii, Katal. Prom-st., 3, 47 (2008).Google Scholar
  83. 83.
    Y. Zhang, W. Wang, X. Jiang, et al., Catal. Sci. Technol. 8, 817 (2018).CrossRefGoogle Scholar
  84. 84.
    J. A. Martens, P. J. Grobet, and P. A. Jacobs, J. Catal. 126, 299 (1990).CrossRefGoogle Scholar
  85. 85.
    P. Zhang, H. Liu, Y. Yue, et al., Fuel Process. Technol. 179, 72 (2018).CrossRefGoogle Scholar
  86. 86.
    R. Bértolo, J. M. Silva, M. F. Ribeiro, et al., Appl. Catal., A 542, 28 (2017).Google Scholar
  87. 87.
    D. Barthomeuf, Zeolites 14, 394 (1994).CrossRefGoogle Scholar
  88. 88.
    P. Niu, H. Xi, J. Ren, et al., Catal. Sci. Technol. 7, 5055 (2017).CrossRefGoogle Scholar
  89. 89.
    C. H. Geng, F. Zhang, Z. X. Gao, et al., Catal. Today 93–95, 485 (2004).CrossRefGoogle Scholar
  90. 90.
    P. Liu, J. Ren, and Y. Sun, Microporous Mesoporous Mater. 114, 365 (2008).CrossRefGoogle Scholar
  91. 91.
    P. Liu, J. Ren, and Y. Sun, J. Fuel Chem. Technol. 36, 610 (2008).Google Scholar
  92. 92.
    L. Xiao, Appl. Clay Sci. 50, 81 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations