Petroleum Chemistry

, Volume 59, Issue 8, pp 880–886 | Cite as

Pervaporation of Water–Alcohol Mixtures on Cation-Exchanged LTA Zeolite Membranes

  • N. A. Artsiusheuski
  • A. L. Grachev
  • B. A. Kolozhvari
  • D. A. FedosovEmail author


Na-LTA membranes have been synthesized on porous nickel supports by in situ crystallization from a true solution. K-LTA and Ca-LTA membranes have been prepared from Na-LTA membranes by ion exchange in 1 M KCl and CaCl2 solutions, respectively. The formation of the LTA structure, its preservation during ion exchange, and achievement of nearly 100% replacement in the near-surface layer of the zeolite membranes have been proven by means of XPD and SEM-EDX. All the zeolite membranes synthesized have been tested in pervaporation of isopropanol–water, ethanol–water, and methanol–water mixtures containing 10 wt % water. It has been found that the mass flux of alcohol does not depend on the nature of alcohol or zeolite cation if the kinetic diameter of alcohol molecule is greater the effective diameter of zeolite pores. A new method for evaluating of the mass flux through nonzeolite pores based on pervaporation data has been proposed. The estimated mass flux through nonzeolite pores for all the zeolite membranes tested is 15 ± 3 g m−2 h−1 which is 1.6 to 7.6% of the total transmembrane mass flux depending on the alcohol chosen.


zeolite membrane LTA ion exchange pervaporation dewatering of alcohols nonzeolite porosity 



This work was supported by the Russian Foundation for Basic Research, project no. 18-38-00923\18, the number at the Center of Information Technologies and Systems for Executive Power Authorities is AAAA-A18-118051790010-5.


  1. 1.
    G. Guan, K. Kusakabe, and S. Morooka, Sep. Sci. Technol. 36, 2233 (2001).CrossRefGoogle Scholar
  2. 2.
    F. J. Varela-Gandía, Á. Berenguer-Murcia, D. Lozano-Castelló, and D. Cazorla-Amorós, J. Membr. Sci. 378, 407 (2011).CrossRefGoogle Scholar
  3. 3.
    S. G. Sorenson, E. A. Payzant, W. T. Gibbons, et al., J. Membr. Sci. 366, 413 (2011).CrossRefGoogle Scholar
  4. 4.
    S. Shirazian and S. N. Ashrafizadeh, J. Ind. Eng. Chem. 22, 132 (2015).CrossRefGoogle Scholar
  5. 5.
    J. Caro and M. Noack, Adv. Nanoporous Mater. 1, 1 (2010).CrossRefGoogle Scholar
  6. 6.
    F. Qu, R. Shi, L. Peng, et al., J. Membr. Sci. 539, 14 (2017).CrossRefGoogle Scholar
  7. 7.
    A. Huang and W. Yang, Mater. Lett. 61, 5129 (2007).CrossRefGoogle Scholar
  8. 8.
    S. Mintova, V. Valtchev, N. Petkov, et al., Stud. Surf. Sci. Catal. 154, 717 (2004).CrossRefGoogle Scholar
  9. 9.
    Y. Liu, Z. Yang, C. Yu, X. Gu, N. Xu, Microporous Mesoporous Mater. 143, 348 (2011).CrossRefGoogle Scholar
  10. 10.
    M. Pera-Titus, J. Llorens, F. Cunill, et al., Catal. Today 104, 281 (2005).CrossRefGoogle Scholar
  11. 11.
    A. Huang and W. Yang, Mater. Res. Bull. 42, 657 (2007).CrossRefGoogle Scholar
  12. 12.
    W. Shan, Y. Zhang, W. Yang, et al., Microporous Mesoporous Mater. 69, 35 (2004).CrossRefGoogle Scholar
  13. 13.
    M. Sen, K. Dana, and N. Das, Ultrasonics Sonochem. 48, 299 (2018).CrossRefGoogle Scholar
  14. 14.
    Q. Ge, J. Shao, Z. Wang, and Y. Yan, Microporous Mesoporous Mater. 151, 303 (2012).CrossRefGoogle Scholar
  15. 15.
    Y. Li, H. Chen, J. Liu, and W. Yang, J. Membr. Sci. 277, 230 (2006).CrossRefGoogle Scholar
  16. 16.
    D. Breck, Zeolite Molecular Sieves (Wiley, New York, 1974).Google Scholar
  17. 17.
    T. Yamamoto, Y. H. Kim, B. C. Kim, et al., Chem. Eng. J. 181–182, 443 (2012).CrossRefGoogle Scholar
  18. 18.
    T. E. Clark, H. W. Deckman, D. M. Cox, and R. R. Chance, J. Membr. Sci. 230, 91 (2004).CrossRefGoogle Scholar
  19. 19.
    M. Noack, P. Kölsch, A. Dittmar, et al., Microporous Mesoporous Mater. 102, 1 (2007).CrossRefGoogle Scholar
  20. 20.
    M. Pera-Titus, J. Llorens, and F. Cunill, Chem. Eng. Sci. 63, 2367 (2008).CrossRefGoogle Scholar
  21. 21.
    S. Aguado, J. Gascon, J. C. Jansen, and F. Kapteijn, Microporous Mesoporous Mater. 120, 170 (2009).CrossRefGoogle Scholar
  22. 22.
    D. A. Fedosov, A. V. Smirnov, V. V. Shkirskiy, et al., J. Membr. Sci. 486, 189 (2015).CrossRefGoogle Scholar
  23. 23.
    M. E. van Leeuwen, Fluid Phase Equilib. 99, 1 (1994).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. A. Artsiusheuski
    • 1
  • A. L. Grachev
    • 1
  • B. A. Kolozhvari
    • 1
    • 2
  • D. A. Fedosov
    • 1
    Email author
  1. 1.Faculty of Chemistry, Moscow State UniversityMoscowRussia
  2. 2.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia

Personalised recommendations