Petroleum Chemistry

, Volume 59, Issue 5, pp 540–545 | Cite as

Dealumination of Nanosized Zeolites Y

  • A. V. YakimovEmail author
  • D. S. Zasukhin
  • V. A. Vorobkalo
  • O. A. Ponomareva
  • E. E. Knyazeva
  • V. I. Zaikovskii
  • B. A. Kolozhvari
  • I. I. Ivanova


The dealumination of nanosized zeolites is an important scientific problem, which should be solved to improve the activity of catalysts based on this zeolite in a broad range of heterogeneous catalytic reactions, particularly in commercial processes. However, the smaller the required size of the synthesized crystals, the lower the Si/Al ratio and the lower the degree of dealumination of this material can be achieved. In this study, the dealumination of zeolites Y with a crystal size of 50–1100 nm by treatment with ammonium hexafluorosilicate and steam heat treatment is discussed. It is shown that the dealumination with ammonium hexafluorosilicate is a “gentler” method in terms of structure preservation, whereas the dealumination by steam heat treatment provides a higher Si/Al ratio in the products; however, this method is inapplicable for crystals smaller than 500 nm, because it leads to the complete degradation of the structure. However, nanosized crystals can be dealuminated by treating with ammonium hexafluorosilicate. In this case, the degree of dealumination is close to 40%. A significant disadvantage of this method is the formation of a SiO2 film on the crystal surface; this feature substantially restricts the use of the ammonium hexafluorosilicate treatment in the synthesis of cracking catalysts.


nanosized zeolites zeolite FAU(Y) dealumination crystal size 



This work was supported by the Russian Science Foundation (project no. 14-23-00094).


  1. 1.
    Zeolites and Catalysis: Synthesis, Reactions and Applications, Ed. by J. Cejka, A. Corma, and S. Zones (Wiley, Weinheim, 2010).Google Scholar
  2. 2.
    J. Scherzer, Catal. Rev.–Sci. Eng. 31 (3), 215 (1989).CrossRefGoogle Scholar
  3. 3.
    D. W. Breck, Zeolite Molecular Sieves: Structure, Chemistry, and Use (Wiley, New York, 1984).Google Scholar
  4. 4.
    R. M. Barrer, Hydrothermal Chemistry of Zeolites (Academic Press, London, 1982).Google Scholar
  5. 5.
    D. E. W. Vaughan, G. C. Edwards, and M. G. Barrett, U.S. Patent No. 4 178 352 (1979).Google Scholar
  6. 6.
    C. V. McDaniel and H. C. Duecker, U.S. Patent No. 3 574 538 (1971).Google Scholar
  7. 7.
    J. Scherzer, J. Catal. 54 (2), 285 (1978).CrossRefGoogle Scholar
  8. 8.
    H. Najar, M. Zina, and A. Ghorbel, React. Kinet. Mech. Catal. 100 (2), 385 (2010).Google Scholar
  9. 9.
    C. S. Triantafillidis, A. G. Vlessidis, and N. P. Evmiridis, Ind. Eng. Chem. Res. 39 (2), 307 (2000).CrossRefGoogle Scholar
  10. 10.
    Q. L. Wang, G. Giannetto, M. Torrealba, G. Perot, C. Kappenstein, and M. Guisnet, J. Catal. 130 (2), 459 (1991).CrossRefGoogle Scholar
  11. 11.
    G. W. Skeels and D. W. Breck, in Proceedings of the 6th International Zeolite Conference, Reno, United States, 1984, p. 87.Google Scholar
  12. 12.
    B. Chauvin, M. Boulet, P. Massiani, F. Fajula, F. Figueras, and T. Des Courieres, J. Catal. 126 (2), 532 (1990).CrossRefGoogle Scholar
  13. 13.
    S. C. Larsen, J. Phys. Chem. 111 (50), 18 464 (2007).Google Scholar
  14. 14.
    B. A. Holmberg, H. Wang, and Y. Yan, Microporous Mesoporous Mater. 74 (1–3), 189 (2004).CrossRefGoogle Scholar
  15. 15.
    Y. Huang, K. Wang, D. Dong, D. Li, M. R. Hill, A. J. Hill, and H. Wang, Microporous Mesoporous Mater. 127 (3), 167 (2010).CrossRefGoogle Scholar
  16. 16.
    E. E. Knyazeva, A. V. Yakimov, O. V. Shutkina, S. V. Konnov, A. V. Panov, A. V. Kleimenov, D. O. Kondrashev, V. A. Golovachev, and I. I. Ivanova, Pet. Chem. 56 (12), 1168 (2016).CrossRefGoogle Scholar
  17. 17.
    B. Chauvin, M. Boulet, P. Massiani, F. Fatula, F. Figueras, and T. D. Courieres, J. Catal. 126 (2), 532 (1990).CrossRefGoogle Scholar
  18. 18.
    D. W. Breck and G. W. Skeels, U.S. Patent No. 4 053 023 (1985).Google Scholar
  19. 19.
    J. R. Sohn, S. J. DeCanio, J. H. Lunsford, and D. J. O’Donnell, Zeolites 6 (3), 225 (1986).CrossRefGoogle Scholar
  20. 20.
    H. Van Bekkum, E. M. Flanigen, P. A. Jacobs, and J. C. Jansen, Introduction to Zeolite Science and Practice (Elsevier, Amsterdam, 2001).Google Scholar
  21. 21.
    J. Rocha and J. Klinowski, J. Chem. Soc., Chem. Commun., No. 16, 1121 (1991).Google Scholar
  22. 22.
    R. A. Rakoczy and Y. Traa, Microporous Mesoporous Mater. 60 (1–3), 69 (2003).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. V. Yakimov
    • 1
    Email author
  • D. S. Zasukhin
    • 1
  • V. A. Vorobkalo
    • 1
  • O. A. Ponomareva
    • 1
    • 2
  • E. E. Knyazeva
    • 2
  • V. I. Zaikovskii
    • 3
    • 4
  • B. A. Kolozhvari
    • 1
  • I. I. Ivanova
    • 1
    • 2
  1. 1.Faculty of Chemistry, Moscow State UniversityMoscowRussia
  2. 2.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia
  3. 3.Boreskov Institute of Catalysis, Russian Academy of SciencesNovosibirskRussia
  4. 4.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations