Advertisement

Petroleum Chemistry

, Volume 59, Issue 5, pp 535–539 | Cite as

Dimethyl Ether Conversion to Liquid Hydrocarbons: Effect of SiO2/Al2O3 Molar Ratio and Zinc Introduction Method on the Properties of a Nanosized Zeolite Catalyst

  • Yu. M. SnatenkovaEmail author
  • D. A. Ionin
  • N. V. Kolesnichenko
  • Z. M. Matieva
Article
  • 5 Downloads

Abstract

The effect of the SiO2/Al2O3 molar ratio in Zn/ZSM-5 nanosized zeolites, the nature of original zeolite ZSM-5, and the method of introducing zinc cations into the zeolite structure on its physicochemical and catalytic properties in dimethyl ether conversion to a mixture of synthetic liquid hydrocarbons is studied. It is shown that an increase in the SiO2/Al2O3 molar ratio leads to rise in selectivity for liquid hydrocarbons and in the content of isoparaffins and aromatic hydrocarbons in them. The method of zinc incorporation into the composition of nanosized ZSM-5 slightly affects selectivity for liquid hydrocarbons and their group hydrocarbon composition.

Keywords:

dimethyl ether nanosized zeolite Н-ZSM-5 acidic properties conversion liquid hydrocarbons 

Notes

ACKNOWLEDGMENTS

This work carried out on the basis of the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, was supported by the Russian Science Foundation, project no. 17-73-30046.

The work was performed using the equipment of the Center for Collective Use New Petrochemical Processes, Polymer Composites, and Adhesives.

REFERENCES

  1. 1.
    S. N. Khadzhiev, N. V. Kolesnichenko, and N. N. Ezhova, Pet. Chem. 48 (5), 325 (2008).CrossRefGoogle Scholar
  2. 2.
    E. E. Kolesnikova, L. E. Kitaev, E. N. Biryukova, N. V. Kolesnichenko, and S. N. Khadzhiev, Pet. Chem. 53 (1), 33 (2013).CrossRefGoogle Scholar
  3. 3.
    J. S. Martinez-Espin, M. Morten, T. V. W. Janssens, S. Svelle, P. Beato, and U. Olsbye, Catal. Sci. Technol. 7, 2700 (2017).CrossRefGoogle Scholar
  4. 4.
    M. Rothaemel, H. Buchold, H. Kompel, A. Glasmacher, and A. Ochs, U.S. Patent, No. 9 724 620 92017.Google Scholar
  5. 5.
    H. Yang, C. Zhang, P. Gao, H. Wang, X. Li, L. Zhong, and W. Y. Sun, Catal. Sci. Technol 7, 4580 (2017).CrossRefGoogle Scholar
  6. 6.
    M. Fattahi, R. M. Behbahani, and T. Hamoule, Fuel 181, 248 (2016).CrossRefGoogle Scholar
  7. 7.
    Y. Ji, H. Yang, and W. Yan, Catalysts 7, 367 (2017).CrossRefGoogle Scholar
  8. 8.
    F. Sh. Kerimli and S. E. Mamedov, Young Res. No. 27, 12 (2017).Google Scholar
  9. 9.
    X. Niu, J. Gao, Q. Miao, M. Dong, G. Wang, W. Fan, Z. Qin, and J. Wang, Microporous Mesoporous Mater. 197, 252 (2014).CrossRefGoogle Scholar
  10. 10.
    Z. Wei, L. Chen, Q. Cao, Z. Wen, Z. Zhou, Y. Xu, and X. Zhu, Fuel Process. Technol. 162, 66 (2017).CrossRefGoogle Scholar
  11. 11.
    S. Hajimirzaee, A. S. Mehr, M. Ghavipour, M. Vatankhah, and R. M. Behbahani, Pet. Sci. Technol. 35, 279 (2017).CrossRefGoogle Scholar
  12. 12.
    X. Jiang, X. Su, X. Bai, Y. Li, L. Yang, K. Zhang, Y. Zhang, Y. Li, and W. Wu, Microporous Mesoporous Mater. 263, 243 (2018).CrossRefGoogle Scholar
  13. 13.
    X. Su, W. Zan, X. Bai, G. Wang, and W. Wu, Catal. Sci. Technol. 7, 1943 (2017).CrossRefGoogle Scholar
  14. 14.
    M. Choi, J. Kim, Y. Sakamoto, O. Terasaki, and R. Ryoo, Nature 461, 246 (2009).CrossRefGoogle Scholar
  15. 15.
    J. Kim, M. Choi, and R. Ryoo, J. Catal. 269, 219 (2010).CrossRefGoogle Scholar
  16. 16.
    Y. Ni, A. Sun, X. Wu, G. Hai, J. Hu, T. Li, and G. J. Li, J. Colloid Interface Sci. 361, 521 (2011).CrossRefGoogle Scholar
  17. 17.
    V. Valtchev and L. Tosheva, Chem. Rev. 113, 6734 (2013).CrossRefGoogle Scholar
  18. 18.
    F. Meng, X. Wang, S. Wang, and Y. Wang, Catal. Today 298, 226 (2017).CrossRefGoogle Scholar
  19. 19.
    N. V. Kolesnichenko, O. V. Yashina, N. N. Ezhova, G. N. Bondarenko, and S. N. Khadzhiev, Russ. J. Phys. Chem. A 92 (1), 118 (2018).CrossRefGoogle Scholar
  20. 20.
    K. Zhang, S. A. Kurumov, X. Su, Yu. M. Snatenkova, Z. M. Bukina, N. V. Kolesnichenko, W. Wu, and S. N. Khadzhiev, Pet. Chem. 57 (12), 1036 (2017).CrossRefGoogle Scholar
  21. 21.
    N. V. Kolesnichenko, Z. M. Bukina, L. E. Kitaev, S. A. Kurumov, E. G. Peresypkina, and S. N. Khadzhiev, Pet. Chem. 56 (6), 621 (2016).Google Scholar
  22. 22.
    W. Gao, W. Wei, and W. Xu, Microporous Mesoporous Mater., 180, 187 (2013).CrossRefGoogle Scholar
  23. 23.
    Y. Fang, J. Tang, and X. Huang. Chin. J. Catal. 31 (3), 264 (2010).CrossRefGoogle Scholar
  24. 24.
    T. I. Batova, E. N. Khivrich, G. N. Shirobokova, N. V. Kolesnichenko, Yu. V. Pavlyuk, and G. N. Bondarenko, Pet. Chem. 53 (6), 383 (2013).CrossRefGoogle Scholar
  25. 25.
    M. V. Frash, V. B. Kazanzky, A. M. Rigby, and R. A. Santen, J. Phys. Chem. B 101, 5346.Google Scholar
  26. 26.
    R. Gounder and E. Iglesia, J. Am. Chem. Soc. 131, 1958 (2009).CrossRefGoogle Scholar
  27. 27.
    D. A. Simonetti, R. T. Carr, and E. Iglesia, J. Catal. 285, P. 19 (2012).CrossRefGoogle Scholar
  28. 28.
    D. A. Simonetti, J. H. Ahn, and E. Iglesia, J. Catal. 277, 173 (2011).CrossRefGoogle Scholar
  29. 29.
    J. A. Schaidle, D. A. Ruddy, and S. E. Habas, ACS Catal. 5, 1794 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Yu. M. Snatenkova
    • 1
    Email author
  • D. A. Ionin
    • 1
  • N. V. Kolesnichenko
    • 1
  • Z. M. Matieva
    • 1
  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia

Personalised recommendations