Advertisement

Petroleum Chemistry

, Volume 59, Issue 5, pp 518–528 | Cite as

Application of Extended Irreversible Thermodynamics to Nanosized Systems: Effect of Diffusion and Chemical Reactions on the Properties of Ni–W Sulfide Catalysts

  • S. I. SerdyukovEmail author
  • I. A. Sizova
  • M. I. KniazevaEmail author
  • A. L. Maximov
Article

Abstract

The effect of precursor on the properties of nanosized sulfide catalysts prepared by the in situ decomposition of nickel–tungsten compounds is studied. Precursors are nickel-thiotungsten complexes [(Ph)3S]2Ni(WS4)2 in the hydrocarbon feedstock, [BMPip]2Ni(WS4)2 in the hydrocarbon feedstock and ionic liquid, and tungsten hexacarbonyl in the hydrocarbon feedstock; oil-soluble salt nickel(II) 2-ethyl hexanoate is used as a source of nickel. The synthesized catalysts are investigated by electron microscopy methods, X-ray powder diffraction, and X-ray photoelectron spectroscopy. Diffusion and chemical reactions in nanosystems are described by the methods of extended irreversible thermodynamics based on a postulate according to which additional variables are time derivatives of usual thermodynamic variables. It is shown that, as the size of nanoparticles decreases, the velocities of diffusion and oxidation chemical reaction in catalyst domains decline; as a result, the content of oxygen in the sample prepared in the hydrocarbon feedstock is lower than that in the sample prepared in the ionic liquid.

Keywords:

sulfide nickel–tungsten catalysts unsupported catalysts nanocatalysis extended irreversible thermodynamics diffusion chemical reactions nanosystems 

Notes

ACKNOWLEDGMENTS

This work was carried out within the framework of State Task for the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

REFERENCES

  1. 1.
    A. N. Startsev, Sulfide Hydrotreating Catalysts: Synthesis, Structure, and Properties (Geo, Novosibirsk, 2007) [in Russian].Google Scholar
  2. 2.
    R. R. Chianelli and M. Daage, Adv. Catal. 40, 177 (1994).Google Scholar
  3. 3.
    U. Heiz and U. Landman, Nanocatalysis (Springer, Berlin, New York, 2007).CrossRefGoogle Scholar
  4. 4.
    F. Pedraza and S. Fuentes, Catal. Lett. 65 (1-3), 107 (2000).CrossRefGoogle Scholar
  5. 5.
    G. Alonso, M. Del Valle, J. Cruz, A. Licea-Claverie, V. Petranovskii, and S. Fuentes, Catal. Today 43 (1-2), 117 (1998).CrossRefGoogle Scholar
  6. 6.
    G. Alonso, V. Petranovskii, M. Del Valle, J. Cruz-Reyes, A. Licea-Claverie, and S. Fuentes, Appl. Catal. A 197 (1), 87 (2000).CrossRefGoogle Scholar
  7. 7.
    I. A. Sizova, S. I. Serdyukov, A. L. Maksimov, and N. A. Sinikova, Pet. Chem. 55 (1), 38 (2015).CrossRefGoogle Scholar
  8. 8.
    I. A. Sizova, S. I. Serdyukov, and A. L. Maksimov, Pet. Chem. 55 (6), 468 (2015).Google Scholar
  9. 9.
    A. L. Maksimov, I. A. Sizova, S. I. Serdyukov, A. B. Kulikov, and S. N. Khadzhiev, RF Patent No. 2 640 210 (2016).Google Scholar
  10. 10.
    I. A. Sizova, A. B. Kulikov, M. I. Onishchenko, S. I. Serdyukov, and A. L. Maksimov, Pet. Chem. 56 (1), 44 (2016).CrossRefGoogle Scholar
  11. 11.
    D. Jou, J. Casas-Vázquez, and D. Lebon, Extended Irreversible Thermodynamics 2nd ed. (Springer, Berlin, 1996).CrossRefGoogle Scholar
  12. 12.
    A. Sellitto, A. Cimmelli, and D. Jou, Mesoscopic Theories of Heat Transport in Nanosystems (Springer, 2016), 170 p.CrossRefGoogle Scholar
  13. 13.
    D. Jou and A. Cimmelli, Commun. Appl. Ind. Math. 7, 196 (2016).Google Scholar
  14. 14.
    F. Perrozzi, S. M. Emamjomeh, V. Paolucci, G. Taglieri, L. Ottaviano, and C. Cantalini, Sens. Actuators 243, 812 (2017).Google Scholar
  15. 15.
    B. S. Zhang, Y. J. Yi, W. Zhang, C. H. Liang, and D. S. Su, Mater. Charact. 62, 684 (2011).CrossRefGoogle Scholar
  16. 16.
    L. P. Hansen, E. Johnson, M. Brorson, and S. Helveg, J. Phys. Chem. 118, 22 768 (2014).CrossRefGoogle Scholar
  17. 17.
    Y. Zhu, Q. M. Ramasse, M. Brorson, P. G. Moses, L. P. Hansen, H. Topsoe, C. F. Kisielowski, and S. Helveg, Catal. Today 261, 75 (2016).CrossRefGoogle Scholar
  18. 18.
    S. R. De Groot and P. Mazur, Nonequilibrium Thermodynamics (North-Holland, Amsterdam, 1962; Mir, Moscow, 1964).Google Scholar
  19. 19.
    G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems (Wiley-Interscience New York, 1977; Nauka, Moscow, 1979).Google Scholar
  20. 20.
    I. Prigogine and D. K. Kondepudi, Modern Thermodynamics: from Heat Engines to Dissipative Structures, 1st. ed. (Wiley, New York, 1998; Mir, Moscow, 2002).Google Scholar
  21. 21.
    S. I. Serdyukov, Russ, J. Phys. Chem. 71 (9), 1412 (1997).Google Scholar
  22. 22.
    S. I. Serdyukov, Phys. Lett. A 281, 16 (2001).CrossRefGoogle Scholar
  23. 23.
    S. I. Serdyukov, N. M. Voskresenskii, V. K. Bel’nov, and I. I. Karpov, J. Non-Equilib. Thermodyn. 28 (3), 207 (2003).CrossRefGoogle Scholar
  24. 24.
    S. I. Serdyukov, J. Non-Equilib. Thermodyn. 38 (1), 81 (2013).CrossRefGoogle Scholar
  25. 25.
    S. I. Serdyukov, Phys. Lett. A 324, 262 (2004).CrossRefGoogle Scholar
  26. 26.
    S. I. Serdyukov, Phys. A (Amsterdam) 391, 5871 (2012).CrossRefGoogle Scholar
  27. 27.
    S. L. Sobolev, Usp. Fiz. Nauk 161 (3), 5 (1991).CrossRefGoogle Scholar
  28. 28.
    S. L. Sobolev, Usp. Fiz. Nauk 167 (10), 1095 (1997).CrossRefGoogle Scholar
  29. 29.
    E. A. Nagnibeda and E. A. Kustova, Kinetic Theory of Transport and Relaxation Processes in Nonequilibrium Reacting Gas Flows (St. Petersburg State Univ., St. Petersburg, 2003).Google Scholar
  30. 30.
    S. L. Sobolev, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 55, 6845 (1997).Google Scholar
  31. 31.
    S. L. Sobolev, Phys. Status Solidi A 156, 293 (1996).CrossRefGoogle Scholar
  32. 32.
    S. L. Sobolev, Acta Mater. 116, 212 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia
  2. 2.Faculty of Chemistry, Moscow State UniversityMoscowRussia

Personalised recommendations