Petroleum Chemistry

, Volume 59, Issue 5, pp 552–557 | Cite as

Catalytic Activity of Composite Track-Etched Membranes Based on Copper Nanotubes in Flow and Static Modes

  • A. A. MashentsevaEmail author
  • M. V. Zdorovets


The catalytic properties of nanosized copper structures are the subject of many reports. In this study, the catalytic activity of copper nanotubes (NTs) in a PET matrix of track-etched membranes (TMs) in the flow mode and under stirring in the static mode is studied using the example of the classical p-nitrophenol (p-NP) reduction reaction. Composite TMs are prepared by the electroless template synthesis ; after 40 min of deposition, the inner diameter of the copper NTs is 295.4 nm, while the wall thickness does not exceed 47.5 ± 4 nm. The structure and composition of the synthesized composite membranes is studied by gas permeability, electron microscopy, energy dispersive analysis, and X-ray diffraction methods. It is shown that, in the flow screening mode, the composite catalyst provides a high p-NP reduction reaction rate; however, after the third test run, the reaction rate decreases by 97%; further, the composite is almost inert. In the static mode, at a relatively low reaction rate, the copper NT-based catalyst provides a high p-NP conversion and remains active for at least six consecutive test runs without any additional activation and regeneration. The results show that composite catalysts based on PET TMs and chemically deposited copper NTs are highly promising.


copper nanotubes nanocatalysis chemical template-assisted synthesis composite track-etched membranes 



This work was supported by the Ministry of Education and Science of the Republic of Kazakhstan (project no. АR05130797).


  1. 1.
    A. Moncada, M. C. Mistretta, S. Randazzo, S. Piazza, C. Sunseri, and R. Inguanta, J. Power Sources 256, 72 (2014).CrossRefGoogle Scholar
  2. 2.
    S. Stassi, V. Cauda, C. Ottone, A. Chiodoni, C. F. Pirri, and G. Canavese, Nano Energy 13, 474 (2015).CrossRefGoogle Scholar
  3. 3.
    M. Davenport, K. Healy, and Z. S. Siwy, Nanotecnology 22, 15 5301 (2011).Google Scholar
  4. 4.
    K. J. Stine, K. Jefferson, and O. V. Shulga, Methods Mol. Biol. 679, 67 (2011).CrossRefGoogle Scholar
  5. 5.
    A. Navitski, G. Muller, V. Sakharuk, T. W. Cornelius, C. Trautmann, and S. Karim, Eur. Phys. J. Appl. Phys. 48, 30 502 (2009).CrossRefGoogle Scholar
  6. 6.
    L. A. Baranova, S. V. Baryshev, G. M. Gusinskii, S. G. Konnikov, and A. V. Nashchekin, Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1686 (2010).Google Scholar
  7. 7.
    C. Celle, A. Cabos, T. Fontecave, B. Laguitton, A. Benayad, L. Guettaz, N. Pélissier, V. H. Nguyen, D. Bellet, D. Munoz-Rojas, and J. -P. Simonato, Nanotecnology 29, 085 701 (2018).Google Scholar
  8. 8.
    M. C. Clochard, M. El Jouad, N. Bizière, P. D. Chung, H. J. Drouhin, E. Balanzat, D. Lairez, M. Viret, and J. E. Wegrowe, Radiat. Phys. Chem. 94, 66 (2014).CrossRefGoogle Scholar
  9. 9.
    T. C. S. C. Gomes, J. De La Torre Medina, M. Lemaitre, and L. Piraux, Nanoscale Res. Lett. 11, 466 (2016).CrossRefGoogle Scholar
  10. 10.
    D. K. Roh, R. Patel, S. H. Ahn, D. J. Kim, and J. H. Kim, Nanoscale 3, 4162 (2011).CrossRefGoogle Scholar
  11. 11.
    E. Spain, A. McCooey, K. Joyce, T. E. Keyes, and R. J. Forster, Sens. Actuators, B 215, 159 (2015).CrossRefGoogle Scholar
  12. 12.
    M. Wirtz, M. Parker, Y. Kobayashi, and C. R. Martin, Chem. Rec. 2, 259 (2002).CrossRefGoogle Scholar
  13. 13.
    Z. Siwy, L. Trofin, P. Kohli, L. A. Baker, C. Trautmann, and C. R. Martin, J. Am. Chem. Soc. 127, 5000 (2005).CrossRefGoogle Scholar
  14. 14.
    M. Delvaux, A. Walcarius, and S. Demoustier-Champagne, Anal. Chim. Acta 525, 21 (2004).CrossRefGoogle Scholar
  15. 15.
    Y. Lu, M. Yang, F. Qu, G. Shen, and R. Yu, Bioelectrochemistry 71, 211 (2007).CrossRefGoogle Scholar
  16. 16.
    F. Muench, L. Sun, T. Kottakkat, M. Antoni, S. Schaefer, U. Kunz, L. Molina-Luna, M. Duerrschnabel, H.-J. Kleebe, S. Ayata, C. Roth, and W. Ensinger, ACS Appl Mater. Interfaces 9, 771 (2017).CrossRefGoogle Scholar
  17. 17.
    A. Mashentseva, D. Borgekov, S. Kislitsin, M. Zdorovets, and A. Migunova, Nucl. Instrum. Methods Phys. Res., Sect B 365, 70 (2015).Google Scholar
  18. 18.
    Z. D. Pozun, S. E. Rodenbusch, E. Keller, K. Tran, W. Tang, K. J. Stevenson, and G. Henkelman, J. Phys. Chem. 117, 7598 (2013).Google Scholar
  19. 19.
    T. Aditya, A. Pal, and T. Pal, Chem. Commun. 51, 9410 (2015).CrossRefGoogle Scholar
  20. 20.
    D. M. Dotzauer, S. Bhattacharjee, Y. Wen, and M. L. Bruening, Langmuir 25, 1865 (2009).CrossRefGoogle Scholar
  21. 21.
    D. Borgekov, A. Mashentseva, S. Kislitsin, A. Kozlovskiy, A. Russakova, and M. Zdorovets, Acta Phys. Pol., A 128, 871 (2015).CrossRefGoogle Scholar
  22. 22.
    F. Muench, M. Rauber, C. Stegmann, S. Lauterbach, U. Kunz, H.-J. Kleebe, and W. Ensinger, Nanotecnology 22, 415 602 (2011).Google Scholar
  23. 23.
    F. Muench, S. Lauterbach, H.-J. Kleebe, and W. Ensinger, J. Surf. Sci. Nanotechnol. 10, 578 (2012).CrossRefGoogle Scholar
  24. 24.
    Y. Yu, K. Kant, J. G. Shapter, J. Addai-Mensah, and D. Losic, Microporous Mesoporous Mater. 153, 131 (2012).CrossRefGoogle Scholar
  25. 25.
    I. V. Korolkov, D. B. Borgekov, A. A. Mashentseva, O. Güven, A. B. Atlcl, A. L. Kozlovskiy, and M. V. Zdorovets, Chem. Pap. 71, 2353 (2017).CrossRefGoogle Scholar
  26. 26.
    F. Muench, M. Oezaslan, I. Svoboda, and W. Ensinger, Mater. Res. Express 2, 105 010 (2015).Google Scholar
  27. 27.
    S. Schaefer, E.-M. Felix, F. Muench, M. Antoni, C. Lohaus, J. Brötz, U. Kunz, I. Gärtner, and W. Ensinger, RSC Adv. 6, 70 033 (2016).Google Scholar
  28. 28.
    A. A. Mashentseva, D. B. Borgekov, D. T. Niyazova, and M. V. Zdorovets, Pet. Chem. 55, 810 (2015).CrossRefGoogle Scholar
  29. 29.
    M. B. Gawande, A. Goswami, F.-X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, and R. S. Varma, Chem. Rev. 116, 3722 (2016).CrossRefGoogle Scholar
  30. 30.
    N. K. Ojha, G. V. Zyryanov, A. Majee, V. N. Charushin, O. N. Chupakhin, and S. Santra, Coord. Chem. Rev. 353, 1 (2017).CrossRefGoogle Scholar
  31. 31.
    A. B. Yeszhanov, A. A. Mashentseva, I. V. Korolkov, Y. G. Gorin, A. L. Kozlovskiy, and M. V. Zdorovets, Chem Pap. 72, 3189 (2018).CrossRefGoogle Scholar
  32. 32.
    M. Y. A. Halim, W. L. Tan, BakarN. H. H. Abu, and M. A. Bakar, Materials 7, 7737 (2014).CrossRefGoogle Scholar
  33. 33.
    J. Santhanalakshmi and L. Parimala, J. Nanopart. Res. 14, 1090 (2012).CrossRefGoogle Scholar
  34. 34.
    H. Feng, Y. Li, S. Lin, E. V. Van der Eycken, and G. Song, Sustain. Chem. Processes 2, 14 (2014).CrossRefGoogle Scholar
  35. 35.
    A. A. Mashentseva, A. L. Kozlovskiy, K. O. Turapbay, A. M. Temir, A. S. Seytbaev, and M. V. Zdorovets, Russ. J. Gen. Chem. 88, 1213 (2018).CrossRefGoogle Scholar
  36. 36.
    B. Bercu, I. Enculescu, and R. Spohr, Nucl. Instrum. Methods Phys. Res., Sect B 225, 497 (2006).Google Scholar
  37. 37.
    A. V. Vorontsov and S. V. Tsybulya, Ind. Eng. Chem. Res. 57, 2526 (2018).CrossRefGoogle Scholar
  38. 38.
    A. A. Mashentseva, A. L. Kozlovskiy, and M. V. Zdorovets, Mater. Res. Express 5, 065 041 (2018).Google Scholar
  39. 39.
    W. Wang, X. Chen, C. Zhao, B. Zhao, H. Dong, S. Ma, L. Li, L. Chen, and B. Zhang, Polymers 10, 1 (2018).Google Scholar
  40. 40.
    Y.-X. Yao, H.-B. Li, J.-Y. Liu, X.-L. Tan, J.-G. Yu, and Z.-G. Peng, J. Nanomater. 2014, 1 (2014).Google Scholar
  41. 41.
    Z. Wu, X. Yuan, H. Zhong, H. Wang, G. Zeng, X. Chen, H. Wang, L. Zhang, and J. Shao, Sci. Rep. 6, 25 638 (2016).Google Scholar
  42. 42.
    Z. H. Farooqi, T. Sakhawat, S. R. Khan, F. Kanwal, M. Usman, and R. Begum, Mater. Sci. Pol. 33, 185 (2015).CrossRefGoogle Scholar
  43. 43.
    A. D. Verma, R. K. Mandal, and I. Sinha, Catal. Lett. 145, 1885 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Nuclear Physics of the Republic of KazakhstanAlmatyKazakhstan
  2. 2.Gumilyov Eurasian National UniversityNur-SultanKazakhstan
  3. 3.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations