Advertisement

Petroleum Chemistry

, Volume 59, Issue 5, pp 485–497 | Cite as

Mechanism of Fischer–Tropsch Synthesis over Nanosized Catalyst Particles: Approaches and Problems of Ab Initio Calculations

  • A. E. KuzminEmail author
  • M. V. Kulikova
  • A. L. Maximov
Article
  • 24 Downloads

Abstract

The main results of calculations of energy parameters performed by ab initio methods (DFT) for steps of the mechanism of Fischer–Tropsch synthesis involving cobalt- and iron-containing catalytic systems which have been published over the last decade and a half are analyzed. Primary attention is paid to the results somehow characterizing a transition from catalyst representation as crystallographically ideal surfaces of metals to the realistic models of nanoparticles both homogeneous crystallochemically and containing surface defects and/or heteroatoms. It is shown that little attention is given to the calculations of iron-containing catalysts compared with cobalt-containing ones and the calculations of chain growth steps compared with steps through formation of single-carbon compounds; the methodological problems of applying DFT to nanoparticles suspended in a liquid medium are highlighted.

Keywords:

Fischer–Tropsch synthesis catalytic mechanism DFT iron cobalt 

Notes

ACKNOWLEDGMENTS

This work performed at the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, was supported by the Russian Science Foundation (project no. 17-73-30046).

REFERENCES

  1. 1.
    I. B. Rapoport, Synthetic Liquid Fuel. Part 2. Synthesis of Motor Fuels from Carbon Monoxide and Hydrogen (Gostoptekhizdat, Moscow, 1950) [in Russian].Google Scholar
  2. 2.
    H. H. Storch, N. Golumbic, and R. B. Anderson, The Fischer-Tropsch and Related Synthesis (Wiley, New York, 1951; Inostrannaya Literatura, Moscow, 1954).Google Scholar
  3. 3.
    G. Henrici-Olivé and S. Olivé, The Chemistry of the Catalyzed Hydrogenation of Carbon Monoxide (Springer, Berlin, 1984).CrossRefGoogle Scholar
  4. 4.
    R. B. Anderson, The Fischer-Tropsch Synthesis (Academic, New York, 1984).Google Scholar
  5. 5.
    S. N. Khadzhiev, A. S. Lyadov, M. V. Krylova, and A. Yu. Krylova, Pet. Chem. 51, 24 (2011).CrossRefGoogle Scholar
  6. 6.
    M. V. Kulikova and S. N. Khadzhiev, Pet. Chem. 57, 1173 (2017).CrossRefGoogle Scholar
  7. 7.
    M. V. Kulikova, O. S. Dement’eva, A. E. Kuz’min, and M. V. Chudakova, Pet. Chem. 56 (12), 1140 (2016).CrossRefGoogle Scholar
  8. 8.
    C. S. Kellner and A. T. Bell, J. Catal. 75, 251 (1982).CrossRefGoogle Scholar
  9. 9.
    G. L. Bezemer, J. H. Bitter, H. P. C. E. Kuipers, and H. Oosterbeek, J. E. E. Holewijn, X. Xu, F. Kapteijn, A. J. van Dillen, and K. P. De Jong, J. Am. Chem. Soc. 128, 3956 (2006).CrossRefGoogle Scholar
  10. 10.
    V. R. R. Pendyala, G. Jacobs, W. Ma, J. L. S. Klettinger, C. H. Yen, and B. H. Davis, Chem. Eng. J. 249, 279 (2014).CrossRefGoogle Scholar
  11. 11.
    Q. Zhang, W. Deng, and Y. Wang, J. Energy Chem. 22, 27 (2013).CrossRefGoogle Scholar
  12. 12.
    C. K. Poorter, Chem. Rev. 81, 447 (1981).CrossRefGoogle Scholar
  13. 13.
    M. E. Dry, Appl. Catal., A 138, 319 (1996).Google Scholar
  14. 14.
    F. Fischer and H. Tropsch, Brennstoff-Chem. 7, 97 (1926).Google Scholar
  15. 15.
    V. A. A. van Barneveld and V. Ponec, J. Catal. 88, 382 (1984).CrossRefGoogle Scholar
  16. 16.
    J. T. Kummer and P. H. Emmett, J. Am. Chem. Soc. 75, 5177 (1953).CrossRefGoogle Scholar
  17. 17.
    Ya. T. Eidus, Russ. Chem. Rev. 36, 338 (1967).CrossRefGoogle Scholar
  18. 18.
    H. Pichler and H. Schulz, Chem. Ing. Tech. 42, 7162 (1970).CrossRefGoogle Scholar
  19. 19.
    G. Henrici-Olive and S. Olive, Angew. Chem., Int. Ed. Engl. 55, 136 (1976).CrossRefGoogle Scholar
  20. 20.
    O. N. Temkin, A. V. Zeigarnik, A. E. Kuz’min, L. G. Bruk, and E. V. Slivinskii, Russ. Chem. Bull. 51, 1 (2002).CrossRefGoogle Scholar
  21. 21.
    W. Koch and M. C. Holthausen, A Chemist’s Guide to Density Functional Theory (Wiley-VCH, Weinheim, 2002), 293 p.Google Scholar
  22. 22.
    C. J. Cramer and D. G. Truhlar, Chem. Phys. Phys. Chem. 11, 10757 (2009).CrossRefGoogle Scholar
  23. 23.
    A. E. Matsson, P. A. Schultz, M. P. Desjarlais, T. R. Matsson, and K. Leung, Model. Numer. Simul. Mater. Sci. 13, 1 (2005).CrossRefGoogle Scholar
  24. 24.
    Y. Qi, J. Yang, D. Chen, and A. Holmen, Catal. Lett. 145, 145 (2015).CrossRefGoogle Scholar
  25. 25.
    X. Xu, P. Tian, Y. Cao, J. Xu, and Y. Han, Chem. Model. 12, 184 (2016).CrossRefGoogle Scholar
  26. 26.
    S. R. Houska, B. L. Averbach, and M. Cohen, Acta Metall. 8, 81 (1960).CrossRefGoogle Scholar
  27. 27.
    B. W. Lee, R. Alsenz, A. Ignatiev, and M. A. van Hove, Phys. Rev. 17, 1510.Google Scholar
  28. 28.
    O. Kitakami, H. Sato, Y. Shimada, F. Sato, M. Tanaka, Phys. Rev. 56, 13849.Google Scholar
  29. 29.
    M. K. Gnanamani, G. Jacobs, W. D. Shafer, and B. H. Davis, Catal. Today 215, 13 (2013).CrossRefGoogle Scholar
  30. 30.
    H. Karaca, O. V. Safonova, S. Chambrey, P. Fongarland, P. Roussel, A. Griboval-Constant, M. Lacroix, and A. Y. Khodakov, J. Catal. 277, 14 (2011).CrossRefGoogle Scholar
  31. 31.
    J.-X. Liu, H. Y. Su, D.-P. Sun, B.-Y. Zhang, and W.-X. Li, J. Am. Chem. Soc. 135, 16284 (2013).CrossRefGoogle Scholar
  32. 32.
    S. E. Mason, I. Grinberg, and A. M. Rappe, Phys. Rev. 69, 161401.Google Scholar
  33. 33.
    F. Ablid-Pedersen and M. P. Andersson, Surf. Sci. 601, 1747 (2007).CrossRefGoogle Scholar
  34. 34.
    M. E. Bridge, C. M. Comrie, and R. M. Lambert, Surf. Sci. 67, 393 (1977).CrossRefGoogle Scholar
  35. 35.
    H. Papp, Surf. Sci. 601, 5571 (1983).Google Scholar
  36. 36.
    S. Liu, Y.-W. Li, J. Wang, and H. Jiao, Catal. Sci. Technol. 6, 8336 (2016).CrossRefGoogle Scholar
  37. 37.
    B.-T. Teng, X.-D. Wen, M. Fan, F.-M. Wu, and Y. Zhang, Phys. Chem. Chem. Phys. 16, 18563 (2014).CrossRefGoogle Scholar
  38. 38.
    Y. Qi, J. Yang, X. Duan, Y.-A. Zhu, D. Chen, and A. Holmen, Catal. Sci. Technol. 4, 3534 (2014).CrossRefGoogle Scholar
  39. 39.
    M. Ojeda, R. Nabar, A. U. Nilekar, A. Ishikawa, M. Mavrikikakis, and E. Iglesia, J. Catal. 272, 287 (2010).CrossRefGoogle Scholar
  40. 40.
    M. K. Zhuo, A. Borgna, and M. Saeys, J. Catal. 297, 217 (2013).CrossRefGoogle Scholar
  41. 41.
    J. R. Inderwildi, S. J. Jenkins, and D. A. King, J. Phys. Chem. 112, 1305.Google Scholar
  42. 42.
    M. K. Zhuo, K. F. Tan, A. Borgna, and M. Saeys, J. Phys. Chem. 113, 8357.Google Scholar
  43. 43.
    A. Asiaee and K. M. Benjamin, Mol. Catal. 436, 218 (2017).CrossRefGoogle Scholar
  44. 44.
    X. Q. Gong, R. Raval, and P. Hu, Surf. Sci. 562, 247 (2004).CrossRefGoogle Scholar
  45. 45.
    C. F. Huo, Y.-W. Li, J. G. Wang, and H. J. Jiao, J. Phys. Chem. 112, 14108.Google Scholar
  46. 46.
    S. Shetty and R. A. van Santen, Phys. Chem. Chem. Phys. 12, 6330 (2010).CrossRefGoogle Scholar
  47. 47.
    R. Zhang, F. Liu, Q. Wang, B. Wang, and D. Li, Appl. Catal., A 525, 76 (2016).Google Scholar
  48. 48.
    C. Chen, Q. Wang, G. Wang, B. Hou, L. Jia, and D. Li, J. Phys. Chem. 120, 9132.Google Scholar
  49. 49.
    J. Cheng, P. Hu, P. Ellis, S. French, G. Kelly, and S. M. Lok, J. Phys. Chem. 112, 9464.Google Scholar
  50. 50.
    Y. Qi, J. Yang, X. Duan, Y.-A. Zhu, D. Chen, and A. Holmen, Catal. Sci. Technol. 4, 3534 (2014).CrossRefGoogle Scholar
  51. 51.
    J. Cheng, X. Q. Gong, P. Hu, S. M. Lok, P. Ellis, and S. French, J. Catal. 254, 285 (2008).CrossRefGoogle Scholar
  52. 52.
    G. Wen, Q. Wang, R. Zhang, D. Li, and B. Wang, Phys. Chem. Chem. Phys. 18, 27 272 (2016).CrossRefGoogle Scholar
  53. 53.
    J. Cheng, P. Hu, P. Ellis, S. French, G. Kelly, and S. M. Lok, J. Phys. Chem. 114, 1085.Google Scholar
  54. 54.
    H. Liu, R. Zhang, L. Ling, Q. Wang, B. Wang, and D. Li, Catal. Sci. Technol. 7, 3758 (2017).CrossRefGoogle Scholar
  55. 55.
    J. Cheng, T. Song, P. Hu, S. M. Lok, P. Ellis, and S. French, J. Catal. 255, 20 (2008).CrossRefGoogle Scholar
  56. 56.
    Y. Qi, C. Ledesma, J. Yang, X. Duan, Y.-A. Zhu, A. Holmen, and D. Chen, J. Catal. 349, 110 (2017).CrossRefGoogle Scholar
  57. 57.
    A. Asiaee and K. M. Benjamin, Mol. Catal. 436, 210 (2017).CrossRefGoogle Scholar
  58. 58.
    J. -X. Liu, H. Y. Su, and W.-X. Li, Catal. Today 215, 36 (2013).CrossRefGoogle Scholar
  59. 59.
    Q. F. Ge and M. Neurock, J. Phys. Chem. B 110, 15368 (2006).CrossRefGoogle Scholar
  60. 60.
    R. A. van Santen, I. M. Ciobica, E. van Steen, and M. M. Ghouri, Adv. Catal. 54, 121 (2011).Google Scholar
  61. 61.
    R. Zhang, L. Kang, H. Liu, L. He, B. Wang, Comput. Mater. Sci. 145, 263 (2018).CrossRefGoogle Scholar
  62. 62.
    X. Q. Gong, R. Raval, and P. Hu, J. Chem. Phys. 122, 024711 (2005).CrossRefGoogle Scholar
  63. 63.
    J. Cheng, P. Hu, P. Ellis, S. French, G. Kelly, and S. M. Lok, J. Catal. 257, 221 (2008).CrossRefGoogle Scholar
  64. 64.
    H.-Y. Su, Y. Zhao, J.-X. Liu, K. Sun, and W.-X. Li, Catal. Sci. Technol. 7, 2967 (2017).CrossRefGoogle Scholar
  65. 65.
    P. van Helden, J.-A. van den Berg, M. A. Petersen, W. Janse van Rensburg, I. M. Ciobica, and J. van de Loosdrecht, Faraday Discuss. 197, 117 (2017).CrossRefGoogle Scholar
  66. 66.
    P. van Helden, J.-A. van den Berg, and I. M. Ciobica, Catal. Sci. Technol. 2, 491 (2012).CrossRefGoogle Scholar
  67. 67.
    M. A. Petersen and J.-A. van den Berg, I. M., Ciobica, and P. van Helden, ACS Catal. 7, 1984 (2017).CrossRefGoogle Scholar
  68. 68.
    A. Banerjee, A. P. van Bavel, H. P. C. E. Kuipers, and M. Saeys, ACS Catal. 7, 5289 (2017).CrossRefGoogle Scholar
  69. 69.
    A. Banerjee, A. P. van Bavel, H. P. C. E. Kuipers, and M. Saeys, ACS Catal. 5, 4756 (2015).CrossRefGoogle Scholar
  70. 70.
    R. Zhang, G. Wen, H. Adidharma, A. G. Russell, B. Wang, M. Radosz, and M. Fan, ACS Catal. 7, 8285 (2017).CrossRefGoogle Scholar
  71. 71.
    Y.-P. Pei, J.-X. Liu, Y.-H. Zhao, Y.-J. Ding, T. Liu, W.-D. Dong, H.-J. Zhu, H.-Y. Su, L. Yan, J.-L. Li, and W.-X. Li, ACS Catal. 5, 3620 (2015).CrossRefGoogle Scholar
  72. 72.
    L. Joos, I. A. W. Filot, S. Cottenier, E. J. M. Hensen, M. Waroquier, V. van Speybroeck, and R. A. van Santen, J. Phys. Chem. 118, 5317.Google Scholar
  73. 73.
    P. Zhai, P-P. Chen, J. Xie, J. -X. Liu, H. Zhao, L. Lin, B. Zhao, H.-Y. Su, Q. Zhu, W.-X. Li, and D. Ma, Faraday Discuss. 197, 207 (2017).CrossRefGoogle Scholar
  74. 74.
    M. Valero Corral and P. Raybaud, J. Phys. Chem. 118, 22 479.Google Scholar
  75. 75.
    M. D. Stroemsheim, I.-H. Svenum, M. H. Farstad, Z. Li, L. Gavrilovic, X. Guo, S. Lervold, A. Borg, and H. J. Venvik, Catal. Today 299, 37 (2018).CrossRefGoogle Scholar
  76. 76.
    X.-C. Xu, J. Su, P. Tian, D. Fu, W. Dai, W. Mao, W.-K. Yuan, J. Xu, and Y.-F. Han, J. Phys. Chem. 119, 216 (2015).Google Scholar
  77. 77.
    G. Prieto, S. Beijer, M. L. Smith, M. He, Y. Au, Z. Wang, D. A. Bruce, K. P. de Jong, J. J. Spivey, and P. E. de Jongh, Angew. Chem., Int. Ed. Engl. 53, 6397 (2014).CrossRefGoogle Scholar
  78. 78.
    T. van Heerden and E. van Steen, Faraday Discuss. 197, 87 (2017).CrossRefGoogle Scholar
  79. 79.
    P. C. Psarras and D. W. Ball, Comput. Theor. Chem. 1063, 1 (2015).CrossRefGoogle Scholar
  80. 80.
    J. L. C. Fajin, M. N. D. S. Cordeiro, and J. R. B. Gomes, Catalysts 5, 3 (2015).CrossRefGoogle Scholar
  81. 81.
    M. Melander and K. Laasonen, J. Mol. Catal. A: Chem. 406, 31 (2015).CrossRefGoogle Scholar
  82. 82.
    S. Zhao, X.-W. Liu, C.-F. Huo, X.-D. Wen, W. CaoD, Guo, Y. Yang, Y.-W. Li, J. Wang, and H. Jiao, Catal. Today 261, 93 (2016).CrossRefGoogle Scholar
  83. 83.
    M. R. Elahifard, M. P. Jigato, and J. W. Niemantsverdriet, Chem. Phys. Chem. 13, 89 (2012).CrossRefGoogle Scholar
  84. 84.
    S. Amaya-Roncancio, D. H. Linares, K. Sapag, and M. I. Rojas, Appl. Surf. Sci. 346, 438 (2015).CrossRefGoogle Scholar
  85. 85.
    S. Amaya-Roncancio, D. H. Linares, H. A. Duarte, and K. Sapag, J. Phys. Chem. 120, 10830.Google Scholar
  86. 86.
    J. M. H. Lo and T. Ziegler, J. Phys. Chem. 111, 13149.Google Scholar
  87. 87.
    J. M. H. Lo and T. Ziegler, J. Phys. Chem. 112, 13681.Google Scholar
  88. 88.
    H.-J. Li, C.-C. Chang, and J.-J. Ho, J. Phys. Chem. 115, 11045.Google Scholar
  89. 89.
    S. Booyens, M. Bowker, and D. J. Willock, Surf. Sci. 625, 69 (2014).CrossRefGoogle Scholar
  90. 90.
    D. Borthwick, V. Fiorin, S. J. Jenkins, and D. A. King, Surf. Sci. 602, 2325 (2008).CrossRefGoogle Scholar
  91. 91.
    D.-B. Cao, Y.-W. Li, J. Wang, and H. Jiao, J. Mol. Catal. A: Chem. 346, 55 (2011).CrossRefGoogle Scholar
  92. 92.
    M. O. Ozbek and J. W. Niemantsverdriet, J. Catal. 325, 9 (2015).CrossRefGoogle Scholar
  93. 93.
    T. H. Pham, X. Duan, G. Qian, X. Zhou, and D. Chen, J. Phys. Chem. 118, 10170.Google Scholar
  94. 94.
    G. Cilpa-Karhu and K. Laasonen, Phys. Chem. Chem. Phys. 20, 2741 (2017).CrossRefGoogle Scholar
  95. 95.
    T. H. Pham, Y. Qi, J. Yang, X. Duan, G. Qian, X. Zhou, D. Chen, and W. Yuan, ACS Catal. 5, 2203 (2015).CrossRefGoogle Scholar
  96. 96.
    D.-B. Cao, F-Q. Zhang, Y.-W. Li, J. Wang, H. Jiao, J. Phys. Chem. B 109, 10922.Google Scholar
  97. 97.
    D.-B. Cao, S.-G. Wang, Y.-W. Li, J. Wang, H. Jiao, J. Mol. Catal. A: Chem. 272, 275 (2007).CrossRefGoogle Scholar
  98. 98.
    L.-J. Deng, C.-F. Huo, X.-W. Liu, X.-H. Zhao, Y.-W. Li, J. Wang, and H. Jiao, J. Phys. Chem. 114, 21585.Google Scholar
  99. 99.
    Y. Wang, Y. Li, S. Huang, J. Wang, H. Wang, J. Lv, and X. Ma, Chem. Phys. Lett. 682, 115 (2017).CrossRefGoogle Scholar
  100. 100.
    X. Yu, X. Zhang, Y. Meng, Y. Zhao, Y. Li, W. Xu, Z. Liu, Appl. Surf. Sci. 434, 464 (2018).CrossRefGoogle Scholar
  101. 101.
    C.-M. Deng, C.-F. Huo, L.-L. Bao, G. Feng, Y.-W. Li, J. Wang, and H. Jiao, J. Phys. Chem. 112, 19018.Google Scholar
  102. 102.
    C.-F. Huo, Y.-W. Li, J. Wang, and H. Jiao, J. Am. Chem. Soc. 131, 14713 (2009).CrossRefGoogle Scholar
  103. 103.
    M. A. Petersen and W. J. van Rensburg, Top. Catal. 58, 665 (2015).CrossRefGoogle Scholar
  104. 104.
    J. G. de la Cruz, M. K. Sabbe, and M.-F. Reyniers, J. Phys. Chem. 121, 25052.Google Scholar
  105. 105.
    L. Zheng, X. Liu, Y. Meng, Y. Zhou, Y. Yang, H. Jiao, Y.-W. Li, X.-D. Wen, W. Guo, and Q. Peng, Phys. Chem. Chem. Phys. 18, 32944 (2016).CrossRefGoogle Scholar
  106. 106.
    M. A. Petersen, M. J. Cariem, M. Claeys, and E. van Steen, Appl. Catal., A 496, 64 (2015).Google Scholar
  107. 107.
    M. H. Mahyuddin, R. V. Belosludov, M. Khazaei, H. Mizuseki, and Y. Kawazoe, J. Phys. Chem. 115, 23893.Google Scholar
  108. 108.
    M. R. Elahifard, E. Fazeli, A. Joshani, and M. R. Gholami, Surf. Interface Anal. 45, 1081 (2013).CrossRefGoogle Scholar
  109. 109.
    X. Tian, T. Wang, Y. Yang, Y.-W. Li, J. Wang, and H. Jiao, J. Phys. Chem. 118, 20472.Google Scholar
  110. 110.
    W. Wang, Y. Wang, and G.-C. Wang, J. Phys. Chem. 121, 6820.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. E. Kuzmin
    • 1
    Email author
  • M. V. Kulikova
    • 1
  • A. L. Maximov
    • 1
    • 2
  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia
  2. 2.Faculty of Chemistry, Moscow State UniversityMoscowRussia

Personalised recommendations