Petroleum Chemistry

, Volume 59, Issue 5, pp 504–510 | Cite as

Properties of Nanosized Cobalt-Molybdenum Sulfide Catalyst Formed In Situ from Sulfonium Thiosalt

  • M. I. KnyazevaEmail author
  • D. I. Panyukova
  • A. L. Maximov


A cobalt-molybdenum-containing sulfonium thiosalt is prepared; when decomposed in situ, it forms the catalyst active in hydrogenation and hydrodesulfurization. The possibility of catalyst isolation and reuse in several hydrogenation cycles is shown. It is found that a lower selectivity for naphthalene hydrogenation products in catalyst recycling is associated with decrease in the dispersity of molybdenum sulfide nanoparticles and reduction in the degree of their promotion by cobalt atoms.


nanosized catalyst hydrogenation hydrodesulfurization 



This work was carried out within the framework of State Task for the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.


  1. 1.
    R. A. Mayers, Handbook of Petroleum Refining Processes, 3rd ed. (McGraw-Hill Education, 2003), 900 p.Google Scholar
  2. 2.
    A. A. Pimerzin, N. N. Tomina, P. A. Nikul’shin, N. M. Maksimov, A. V. Mozhaev, D. I. Ishutenko, and E. E. Vishnevskaya, Katal. Prom-sti. 7, (1) 30 (2015).Google Scholar
  3. 3.
    S. Brunet, D. Mey, G. Perot, C. Bouchy, and F. Diehl, Appl. Catal., A 278 (2), 143 (2005).Google Scholar
  4. 4.
    N. N. Petrukhina, I. A. Sizova, and A. L. Maksimov, Katal. Prom-sti. 9 (3), 247 (2017).Google Scholar
  5. 5.
    J. Ojeda, N. Escalona, J. L. G. Fierro, A. LopezAgudo, and F. J. Gil-Llambias, Appl. Catal., A 281 (1-2), 25 (2005).Google Scholar
  6. 6.
    C. Leyva, J. Ancheyta, A. Travert, F. Mauge, L. Mariey, J. Ramirez, and M. S. Rana, Appl. Catal., A 425–426, 1 (2012).Google Scholar
  7. 7.
    A. L. Maximov, I. A. Sizova, and S. N. Khadzhiev, Pure Appl. Chem. 89 (8), 1145 (2017).CrossRefGoogle Scholar
  8. 8.
    G. Nagy, G. Polczmann, D. Kallo, and J. Hancsok, Chem. Eng. J. 154 (1-3), 307 (2009).CrossRefGoogle Scholar
  9. 9.
    N. N. Tomina, A. A. Pimerzin, and I. K. Moiseev, Russ. J. Gen. Chem. 79 (6), 1274 (2009).CrossRefGoogle Scholar
  10. 10.
    N. G. Evdokimova and N. N. Luneva, Bull. Econ. Manage. 2 (8), 39 (2017).Google Scholar
  11. 11.
    S. N. Khadzhiev, Pet. Chem. 56 (6), 465 (2016).CrossRefGoogle Scholar
  12. 12.
    G. Bellussi, G. Rispoli, A. Landoni, R. Millini, D. Molinari, E. Montanari, D. Moscotti, and P. Pollesel, J. Catal. 308, 189 (2013).CrossRefGoogle Scholar
  13. 13.
    I. A. Sizova, A. B. Kulikov, A. V. Zolotukhina, S. I. Serdyukov, A. L. Maksimov, and E. A. Karakhanov, Pet Chem. 56 (12), 1107 (2016).CrossRefGoogle Scholar
  14. 14.
    I. A. Sizova, S. I. Serdyukov, A. L. Maksimov, and N. A. Sinikova, Pet. Chem. 55 (1), 38 (2015).CrossRefGoogle Scholar
  15. 15.
    J. L. Brito, M. Ilij, and P. Hernfindez, Thermochim. Acta 256, 325 (1995).CrossRefGoogle Scholar
  16. 16.
    J. Espino, L. Alvarez, C. Ornelas, J. L. Rico, S. Fuentes, G. Berhault, and G. Alonso, Catal. Lett. 90 (1-2), 71 (2003).CrossRefGoogle Scholar
  17. 17.
    H. Nava, C. Ornelas, A. Aguilar, G. Berhault, S. Fuentes, and G. Alonso, Catal. Lett. 86 (4), 257 (2003).CrossRefGoogle Scholar
  18. 18.
    R. Huirache-Acun, M. A. Albiter, C. Ornelas, F. Paraguay-Delgado, R. Martinez-Sanchez, and G. Alonso-Nunez, Appl. Catal., A 308, 134 (2006).Google Scholar
  19. 19.
    G. Alonso, M. Del Valle, J. Cruz, V. Petranovski, A. Licea-Claverie, and S. Fuentes, Catal. Lett. 52, 55.Google Scholar
  20. 20.
    G. Alonso, V. Petranovski, M. Del Valle, J. Cruz-Reyes, A. Licea-Claverie, and S. Fuentes, Appl. Catal., A 197, 87 (2000).Google Scholar
  21. 21.
    Al. A. Pimerzin, D. I. Ishutenko, A. V. Mozhaev, V. M. Kapustin, E. A. Chernysheva, A. V. Maximova, A. A. Pimerzin, and P. A. Nikulshin, Fuel Process. Technol. 156, 98 (2017).Google Scholar
  22. 22.
    P. Minaev, M. Nikulshina, A. Mozhaev, K. Maslakov, R. Boldushevskii, and P. Nikulshin, Fuel Process. Technol. 181, 44 (2018).CrossRefGoogle Scholar
  23. 23.
    H. Nava, F. Pedraza, and G. Alonso, Catal. Lett. 99 (1-2), 65 (2005).CrossRefGoogle Scholar
  24. 24.
    R. Huirache-Acun, M. A. Albiter, C. Ornelas, F. Paraguay-Delgado, R. Martinez-Sanchez, and G. Alonso-Nunez, Appl. Catal., A 308, 134 (2006).Google Scholar
  25. 25.
    K. P. Callahan and P. A. Piliero, Inorg. Chem. 19, 2619 (1980).CrossRefGoogle Scholar
  26. 26.
    C. J. Crossland, I. R. Evans, and J. S. O. Evans, Dalton Trans. No. 12, 1597 (2008).CrossRefGoogle Scholar
  27. 27.
    S. Kasztelan, H. Toulhoat, J. Grimblot, and J. P. Bonnelle, Appl. Catal. 13, 127.Google Scholar
  28. 28.
    I. A. Sizova, S. I. Serdyukov, and A. L. Maksimov, Pet. Chem. 55 (6), 470 (2015).CrossRefGoogle Scholar
  29. 29.
    B. Yoosuk, D. Tumnantong, and P. Prasassarakich, Chem. Eng. Sci. 79, 1 (2012).CrossRefGoogle Scholar
  30. 30.
    S. Damyanova, L. Petrov, and P. Grange, Appl. Catal., A 239 (1-2), 241 (2003).Google Scholar
  31. 31.
    P. A. Nikulshin, A. V. Mozhaev, K. I. Maslakov, A. A. Pimerzin, and V. M. Kogan, Appl. Catal. B 158-159, 161 (2014).CrossRefGoogle Scholar
  32. 32.
    J. F. Moulder, W. F. Stickle, P. E. S. Kennetlf, and D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corp., 1992), 261 p.Google Scholar
  33. 33.
    V. Costa, B. Guichard, M. Digne, C. Legens, P. Lecour, K. Marchand, P. Raybaud, E. Krebs, and C. Geantet, Catal. Sci. Technol. 3, 140 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. I. Knyazeva
    • 1
    Email author
  • D. I. Panyukova
    • 1
  • A. L. Maximov
    • 1
    • 2
  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia
  2. 2.Faculty of Chemistry, Moscow State UniversityMoscowRussia

Personalised recommendations