Advertisement

Petroleum Chemistry

, Volume 59, Issue 5, pp 498–503 | Cite as

Hydroconversion of Oil Vacuum Distillation Residues in the Presence of Ultrafine Iron-Containing Catalysts Synthesized from Oil-Soluble Precursors

  • Kh. M. Kadiev
  • L. A. Zekel’Email author
  • A. M. Gyul’maliev
  • A. U. Dandaev
  • M. Kh. Kadieva
Article
  • 8 Downloads

Abstract

The hydroconversion of oil distillation residues in the presence of ultrafine catalysts synthesized in the reaction medium from feedstock-soluble iron-containing precursors—iron acetylacetonate, ferrocene, and iron oleate—is studied. It is found that the distillate fraction yield and the feedstock conversion in the hydroconversion reaction increase in the following order: iron oleate, ferrocene, iron acetylacetonate. The efficiency of Fe-containing catalysts synthesized from oil-soluble precursors is compared with the efficiency of the nanosized MoS2 catalyst previously studied in the tar hydroconversion process. In the presence of the catalysts synthesized from iron acetylacetonate and ferrocene, the distillate fraction yield and the feedstock conversion are higher than the respective parameters in the case of MoS2. However, with respect to the yield of condensation products (coke), the tested Fe-containing catalysts are significantly inferior to MoS2.

Keywords:

ultrafine catalyst precursor iron compounds hydroconversion 

Notes

ACKNOWLEDGMENTS

This work was performed under the State Task for the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

REFERENCES

  1. 1.
    S. Zhang, D. Liu, W. Deng, and G. Que, Energy Fuels 21 (6), 3057 (2007).CrossRefGoogle Scholar
  2. 2.
    S. N. Khadzhiev, Kh. M. Kadiev, and M. Kh. Kadieva, Pet. Chem. 54 (5), 323 (2014).CrossRefGoogle Scholar
  3. 3.
    G. Bellussi, G. Rispoli, A. Landoni, L. Millini, D. Molinare, E. Montanari, and P. Pollesel, J. Catal. 308, 189 (2013).CrossRefGoogle Scholar
  4. 4.
    L. Dong, C. Wenlong, Z. Shuyi, and Q. Guohe, Energy Fuels 22, 4165 (2008).CrossRefGoogle Scholar
  5. 5.
    N. Panariti, A. Del Bianco, G. Del Piero, and M. Marchionna, Appl. Catal. 204, 203 (2000).CrossRefGoogle Scholar
  6. 6.
    G. Bellussi, G. Rispoli, D. Molinari, A. Landoni, P. Pollesel, N. Panariti, R. Millini, and E. Montanari, Catal. Sci. Technol., No. 3, 176 (2013).Google Scholar
  7. 7.
    P. A. Montano and A. S. Bommannavar, J. Mol. Catal. 20, 393 (1983).CrossRefGoogle Scholar
  8. 8.
    S. Vasireddy, B. Morreale, A. Cugini, Ch. Song, and J. J. Spivey, Energy Environ. Sci., No. 4, 311 (2011).Google Scholar
  9. 9.
    U. Graeser, G. Eschet, and R. Holighnaus, in Proceedings of the Refining Department, American Petroleum Institute, San Diego, CA, United States, 1986, p. 169.Google Scholar
  10. 10.
    N. K. Benham and B. B. Pruden, in National Petroleum Refiners Association Annual Meeting, San Antonio, TX, United States, 1996.Google Scholar
  11. 11.
    N. Huy and V. H. Pham, Chem. Eng. Technol. 36 (8), 1365 (2013).CrossRefGoogle Scholar
  12. 12.
    R. Shen, C. Liu, and G. Que, Pet. Process. Petrochem., No. 11, 58 (1998).Google Scholar
  13. 13.
    Kh. M. Kadiev, N. V. Oknina, A. L. Maksimov, M. Kh. Kadieva, A. E. Batov, and A. U. Dandaev, Res. J. Pharm., Biol. Chem. Sci. 7 (5), 704 (2016).Google Scholar
  14. 14.
    A. L. Willis, Zh. Chen, J. He, Y. Zhu, N. J. Turro, and S. O’Brien, J. Nanomater. 2007, 1 (2007).CrossRefGoogle Scholar
  15. 15.
    A. Leonhardt, S. Hampel, C. Muller, L. Monch, R. Koseva, M. Ritschel, D. Elefant, K. Biedermann, and B. Buchner, Chem. Vap. Deposition 12 (6), 380 (2006).CrossRefGoogle Scholar
  16. 16.
    N. Koprinarov, M. Konstantinova, T. Ruskov, I. Spirov, M. Marinov, and Ts. Tsacheva, Bulg. J. Phys. 34, 17 (2007).Google Scholar
  17. 17.
    G. Salas, C. Casado, F. Teran, J. Miranda, C. J. Serna, and M. P. Morales, J. Mater. Chem. 22, 21 065 (2012).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Kh. M. Kadiev
    • 1
  • L. A. Zekel’
    • 1
    Email author
  • A. M. Gyul’maliev
    • 1
  • A. U. Dandaev
    • 1
  • M. Kh. Kadieva
    • 1
  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia

Personalised recommendations