Advertisement

Petroleum Chemistry

, Volume 59, Issue 5, pp 511–517 | Cite as

Effect of the Texture and Acidity of a Zeolite-Containing Support on the Activity and Selectivity of NiMoS Catalysts in Hydrogenation and Hydrocracking Reactions

  • R. E. BoldushevskiiEmail author
  • A. V. Mozhaev
  • A. V. Yusovskii
  • V. S. Dorokhov
  • A. I. Guseva
  • P. A. Nikul’shin
Article

Abstract

Supports based on pseudoboehmite, ultrastable zeolite Y, and ZSM-5 with different silica ratio and concentration of acid sites are prepared. NiMoS catalysts are synthesized by the incipient wetness impregnation of the prepared supports by the joint solution of H3PMo12O40 and nickel citrate. The composition and properties of the supports and catalysts are studied by low-temperature nitrogen adsorption, ammonia temperature-programmed desorption, IR spectroscopy of pyridine adsorption, and high-resolution transmission electron microscopy. Catalytic properties are investigated in dibenzothiophene hydrodesulfurization (HDS), naphthalene hydrogenation (HYD), and hexadecane hydrocracking (HC) concurrent reactions in a flow unit equipped with a microreactor. It is shown that the HDS activity of the synthesized samples declines as the dispersity of active-phase particles decreases in correlation with a change in the surface area of support mesopores. It is shown that the NiMo/ZSM-5/23 catalyst exhibits a high activity in naphthalene HYD and subsequent reactions of tetralin and decalin naphthene ring opening and hexadecane HC. It is found that the activity of zeolite-containing catalysts in naphthalene HYD grows with the proportion of Brønsted acid sites.

Keywords:

hydrotreating hydrocracking NiMoS dibenzothiophene naphthalene hexadecane 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, grant no. 17-73-20386.

REFERENCES

  1. 1.
    V. M. Kogan, P. A. Nikul’shin, V. S. Dorokhov, E. A. Permyakov, A. V. Mozhaev, D. I. Ishutenko, O. L. Eliseev, N. N. Rozhdestvenskaya, and A. L. La-pidus, Russ. Chem. Bull., 63 (2), 332 (2014).CrossRefGoogle Scholar
  2. 2.
    P. Raybaud and H. Toulhoat, Catalysis by Transition Metal Sulfides from Molecular Theory to Industrial Applications (Technip Edition, Paris, 2013), p. 832.Google Scholar
  3. 3.
    P. Nikulshin, A. Mozhaev, C. Lancelot, P. Blanchard, E. Payen, and C. Lamonier, Comptes Rendus Chimie, No. 19, 1276 (2016).CrossRefGoogle Scholar
  4. 4.
    A. Romero-Galarza, A. Gutierrez-Alejandre, and J. Ramirez, J. Catal. 280 (2), 230 (2011).CrossRefGoogle Scholar
  5. 5.
    A. A. Pimerzin, N. N. Tomina, P. A. Nikul’shin, N. M. Maksimov, A. V. Mozhaev, D. I. Ishutenko, and E. E. Vishnevskaya, Katal. Prom-sti, 7 (1), 30 (2015).Google Scholar
  6. 6.
    N. N. Tomina, P. A. Nikul’shin, and A. A. Pimerzin, Pet. Chem. 48 (2), 92 (2008).CrossRefGoogle Scholar
  7. 7.
    P. P. Minaev, P. A. Nikulshin, M. S. Kulikova, A. A. Pimerzin, and V. M. Kogan, Appl. Catal., A 505, 456 (2015).Google Scholar
  8. 8.
    A. V. Mozhaev, M. S. Nikul’shina, K. Lanselot, P. Blanshard, K. Lamon’er, and P. A. Nikul’shin, Pet. Chem. 58 (14) 1198 (2018).CrossRefGoogle Scholar
  9. 9.
    P. P. Minaev, M. S. Nikul’shina, A. V. Mozhaev, and P. A. Nikul’shin, Pet. Chem. 58 (14) 1186 (2018).CrossRefGoogle Scholar
  10. 10.
    J. Ancheyta, R. S. Mohan, and E. Furimsky, Catal. Today 109, 3 (2005).CrossRefGoogle Scholar
  11. 11.
    Y. Okamoto, Bull. Chem. Soc. Jpn. 87 (1), 20 (2013).CrossRefGoogle Scholar
  12. 12.
    Z. R. Ismagilov, R. A. Shkrabina, and N. A. Koryabkina, Alumina Supports: Manufacture, Properties, and Application in Catalytic Processes of Environmental Protection: Analytical Review, Ed. by Z. R. Ismagilov (GPNTB SO RAN, Novosibirsk, 1998) [in Russian].Google Scholar
  13. 13.
    A. A. Taromi and S. Kaliaguine, Fuel Process. Technol. 171, 20 (2018).CrossRefGoogle Scholar
  14. 14.
    C. Zhang, M. Brorson, P. Li, X. Liu, T. Liu, Z. Jiang, C. Li, Appl. Catal. A: 570, 84 (2018).CrossRefGoogle Scholar
  15. 15.
    M. A. Alamoudi and K. J. Smith, Can. J. Chem. Eng. (2018).  https://doi.org/10.1002/cjce.23403
  16. 16.
    T. T. Nguyen, K. Imai, J. Pu, and E. W. Qian, Energy Fuels 32 (2), 1665 (2018).CrossRefGoogle Scholar
  17. 17.
    M. A. Al-Daous and S. A. Ali, Fuel 97, 662 (2012).CrossRefGoogle Scholar
  18. 18.
    K. Nakano, S. A. Ali, H. J. Kim, T. Kim, K. Alhooshani, J. I. Park, and I. Mochida, Fuel Process. Technol. 116, 44 (2013).CrossRefGoogle Scholar
  19. 19.
    G. Perot, Catal. Today 86 (1-4), 111 (2003).CrossRefGoogle Scholar
  20. 20.
    E. Hu, Z. Yao, L. Zhao, J. Wu, H. Meng, S. Chang, and Y. Li, Can. J. Chem. Eng. (2018). 2doi.org/ 10.1002/cjce.23352Google Scholar
  21. 21.
    J. Garcia-Davila, E. Ocaranza-Sanchez, C. Sanchez, and A. L. Martinez-Ayala, J. Spectrosc. (London, U. K.) 2018 (2018). Article ID 5326456.Google Scholar
  22. 22.
    M. Breysse, P. Afanasiev, C. Geantet, and M. Vrinat, Catal. Today 86 (1-4), 5 (2003).CrossRefGoogle Scholar
  23. 23.
    F. Luck, Bull. Soc. Chim. Belg. 100 (11–12), 781 (1991).CrossRefGoogle Scholar
  24. 24.
    V. Goodwin, B. Yoosuk, T. Ratana, and S. Tungkamani, Energy Procedia 79, 486 (2015).CrossRefGoogle Scholar
  25. 25.
    W. Han, H. Nie, X. Long, M. Li, Q. Yang, and D. Li, Catal. Today 292, 58 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • R. E. Boldushevskii
    • 1
    Email author
  • A. V. Mozhaev
    • 1
    • 2
  • A. V. Yusovskii
    • 1
  • V. S. Dorokhov
    • 1
    • 3
  • A. I. Guseva
    • 1
  • P. A. Nikul’shin
    • 1
    • 2
  1. 1.All-Russia Research Institute of Oil RefiningMoscowRussia
  2. 2.Samara State Technical UniversitySamaraRussia
  3. 3.Zelinsky Institute of Organic Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations