Petroleum Chemistry

, Volume 58, Issue 14, pp 1192–1197 | Cite as

Hydrogenation of Polymeric Petroleum Resins in the Presence of Unsupported Sulfide Catalysts Synthesized from Water-Soluble Precursors

  • N. N. PetrukhinaEmail author
  • S. A. Korchagina
  • O. I. Khan
  • A. L. Maksimov


Unsupported nickel–molybdenum sulfide hydrogenation catalysts are ex situ synthesized from precursor-aqueous-solution-in-decalin emulsions. A comparative analysis of the activity of the synthesized catalysts and the GO-38 commercial supported catalyst in polymeric petroleum resin hydrogenation is conducted. It is shown that the activity of the synthesized catalysts is higher than the activity of the supported catalyst at an identical concentration of the active metal in the reaction medium. The effect of the type and concentration of the emulsifier on the size of the emulsion droplets and the catalytic activity of the resulting catalyst is studied. It is shown that polymeric petroleum resins can be used instead of synthetic surfactants as an emulsifier in catalyst synthesis. An optimum Mo/Ni ratio (1/0.25) that provides the maximum degree of hydrogenation (100 and 78% for olefinic and aromatic moieties, respectively) is found. Catalyst activity varies only slightly after reuse in two or three runs; further, activity in the hydrogenation of aromatic moieties decreases, while activity in the hydrogenation of double bonds remains unchanged; in this case, the degree of dispersion does not change.


hydrogenated polymeric petroleum resin sulfide catalyst emulsion unsupported catalyst dispersed-phase catalysis polymer hydrogenation 



This work was performed within the scope of State Task for the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.


  1. 1.
    J.-H. Park, W.-S. Kong, S.-H. Lee, J. W. Lee, H. G. Yoonb, and B. Y. Lee, Int. J. Adhes. Adhes. 68, 326 (2016).CrossRefGoogle Scholar
  2. 2.
    J. K. Kim, D. Y. Ryu, and K. H. Lee, Polymer 41, 5195 (2000).CrossRefGoogle Scholar
  3. 3.
    D. Y. Ryu and J. K. Kim, Polymer 41, 5207 (2000).CrossRefGoogle Scholar
  4. 4.
    Q. Luvinh, A. V. Macedo, and R. J. F. Rydzkowski, U.S. Patent No. 5 571 867 (1996).Google Scholar
  5. 5.
    D. S. Chernykh and I. V. Mardirosova, Stroit. Rekonstr., No. 2 (28), 73 (2010).Google Scholar
  6. 6.
    S. V. Oksak, Vestn. Kharkov. Nat. Avtomob.-Dorozhn. Univ., No. 40, 96 (2008).Google Scholar
  7. 7.
    R. Mildenberg, M. Zander, and G. Collin, Hydrocarbon Resins (VCH, Weinheim, New York, 1997).CrossRefGoogle Scholar
  8. 8.
    S. V. Antonov, N. N. Petrukhina, O. A. Pakhmanova, and A. L. Maksimov, Pet. Chem. 57 (12), 983 (2017).CrossRefGoogle Scholar
  9. 9.
    A. V. Macedo and J. L. Haluska, U.S. Patent No. 6 433 104 (2002).Google Scholar
  10. 10.
    A. N. Stuckey and J. R. Shutt, U.S. Patent No. 4 328 090 (1982).Google Scholar
  11. 11.
    N. Sae-Ma, P. Praserthdam, J. Panpranot, S. Chaemchuen, S. Dokjamp, K. Suriye, and G. L. Rempel, J. Appl. Polym. Sci. 117, 2862 (2010).Google Scholar
  12. 12.
    J. Coca, R. Rosal, F. V. Diez, and H. Sastre, J. Chem. Technol. Biotechnol. 53, 365 (1992).CrossRefGoogle Scholar
  13. 13.
    Y. Lujun, J. Dahao, X. Jiao, M. Lei, and L. Xiaonian, China Pet. Process. Petrochem. Technol. 14 (3), 83 (2012).Google Scholar
  14. 14.
    D. Xu, R. G. Carbonell, D. J. Kiserow, and G. W. Roberts, Ind. Eng. Chem. Res. 42, 3509 (2003).CrossRefGoogle Scholar
  15. 15.
    J. S. Ness, J. C. Brodil, F. S. Bates, S. F. Hahn, D. A. Hucul, and M. A. Hillmyer, Macromolecules 35, 602 (2002).CrossRefGoogle Scholar
  16. 16.
    H. Ortiz-Moreno, J. Ramirez, R. Cuevas, G. Marroquin, and J. Ancheyta, Fuel 100, 186 (2012).CrossRefGoogle Scholar
  17. 17.
    S. N. Khadzhiev, Pet. Chem. 56 (6), 465 (2016).CrossRefGoogle Scholar
  18. 18.
    M. Kh. Kadieva, S. N. Khadzhiev, Kh. M. Kadiev, A. M. Gyul’maliev, and T. V. Yakovenko, Pet. Chem. 51 (1), 16 (2011).CrossRefGoogle Scholar
  19. 19.
    S. N. Khadzhiev, Kh. M. Kadiev, and M. Kh. Kadieva, Pet. Chem. 54 (5), 323 (2014).CrossRefGoogle Scholar
  20. 20.
    S. N. Khadzhiev, Kh. M. Kadiev, and M. Kh. Kadieva, Pet. Chem. 53 (6), 374 (2013).CrossRefGoogle Scholar
  21. 21.
    Q. Pan, G. Rempel, and J. Wu, U.S. Patent No. 7 897 695 (2011).Google Scholar
  22. 22.
    J. L. Haluska and K. L. Riley, U.S. Patent No. 6 755 963 (2004).Google Scholar
  23. 23.
    N. N. Petrukhina, E. M. Zakharyan, S. A. Korchagina, M. V. Nagieva, and A. L. Maksimov, Pet. Chem. 57 (14), 1295 (2017).CrossRefGoogle Scholar
  24. 24.
    A. A. Manankova, Z. T. Dmitrieva, and V. G. Bondaletov, R.F. Patent No. 2 313 385 (2207).Google Scholar
  25. 25.
    H. Zhao, H. -P. Li, and K. -J. Liao, Pet. Sci. Technol. 31, 284 (2013).CrossRefGoogle Scholar
  26. 26.
    A. A. Troyan, V. G. Bondaletov, and Z. T. Dmitrieva, Izv. Tomsk. Politekh. Univ. 316 (3), 86 (2010).Google Scholar
  27. 27.
    I. A. Sizova, S. I. Serdyukov, and A. L. Maksimov, Pet. Chem. 55 (6), 470 (2015).CrossRefGoogle Scholar
  28. 28.
    M. L. Vrinat and L. De Mourgues, Appl. Catal. 5, 43 (1983).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. N. Petrukhina
    • 1
    Email author
  • S. A. Korchagina
    • 1
  • O. I. Khan
    • 2
  • A. L. Maksimov
    • 1
    • 3
  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia
  2. 2.Gubkin Russian State University of Oil and Gas (National Research University)MoscowRussia
  3. 3.Faculty of Chemistry, Moscow State UniversityMoscowRussia

Personalised recommendations