Advertisement

Petroleum Chemistry

, Volume 58, Issue 14, pp 1213–1220 | Cite as

Naphthalene Hydrogenation over Catalysts Formed In Situ from Ruthenium-Containing Thiosalts

  • M. I. OnishchenkoEmail author
  • I. A. Suzova
  • A. L. Maximov
Article
  • 1 Downloads

Abstract

Ruthenium-containing 1-butyl-1-methylpiperidinium thiosalts are synthesized; their decomposition in situ in a hydrocarbon medium makes it possible to form catalysts active in the hydrogenation of naphthalene. It is shown that the modification of thiosalts with nickel leads to the formation of more active catalyst systems. A thermally stable ionic liquid 1-butyl-1-methylpiperidinium trifluoromethanesulfonate is synthesized. It is shown that the hydrogenation catalyst may be prepared by the decomposition of thiosalts in the ionic liquid and that it can be reused in several cycles without any loss in activity.

Keywords:

ruthenium sulfide ionic liquids hydrogenation 

Notes

ACKNOWLEDGMENTS

This work, supported by the Federal Agency for Scientific Organizations of Russia, was performed within the scope of State Task for the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

REFERENCES

  1. 1.
    A. Stanislaus, A. Marafi, and M. S. Rana, Catal. Today 153 (2010).Google Scholar
  2. 2.
    R. R. Aliev, Petroleum Refining Catalysts and Processes (Khimiya, Moscow, 2010) [in Russian].Google Scholar
  3. 3.
    Z. L. Solodova and A. R. Nurmukhametova, Vestn. Tekhnol. Univ. 20 (10), 53 (2017).Google Scholar
  4. 4.
    M. Fahim, T. Al-Sahhaf, and A. Elkilani, Fundamentals of Petroleum Refining (Elsevier Science, 2009), 516 p.Google Scholar
  5. 5.
    A. L. Maximov, I. A. Sizova, and S. N. Khadzhiev, Pure Appl. Chem. 89 (8), 1145 (2017).CrossRefGoogle Scholar
  6. 6.
    H. Toulhoat and P. Raybaud, Catalysis by Transition Metal Sulphides: From Molecular Theory to Industrial Application (Editions Technips, 2013), 787 p.Google Scholar
  7. 7.
    T. A. Pecoraro and R. R. Chianelli, J. Catal. 67 (2), 430 (1981).CrossRefGoogle Scholar
  8. 8.
    S. Eijsbouts, V. J. H. de Beer, and R. Prins, J. Catal. 109 (1), 217 (1988).CrossRefGoogle Scholar
  9. 9.
    M. J. Ledoux and B. Djellouli, J. Catal. 115 (2), 580 (1989).CrossRefGoogle Scholar
  10. 10.
    www.cmmarket.ru/markets/rtworld.htm. Cited January 12, 2017.Google Scholar
  11. 11.
    M. Lacroix, N. Boutarfa, C. Guillard, M. Vrinat, and M. Breysse, J. Catal. 120 (2), 473 (1989).CrossRefGoogle Scholar
  12. 12.
    J. Quartararo, S. Mignard, and S. Kasztelan, J. Catal. 192 (2), 307 (2000).CrossRefGoogle Scholar
  13. 13.
    A. Infantes-Molina, A. Romero-Perez, D. Eliche-Quesada, J. Merida-Robles, A. Jimenez-Lopez, and E. Rodriguez-Castellon, Transition Metal Sulfide Catalysts for Petroleum Upgrading – Hydrodesulfurization Reactions (InTech, 2012), 248 p.CrossRefGoogle Scholar
  14. 14.
    A. Romero-Perez, A. Infantes-Molina, E. Rodriguez-Castellon, and A. Jimenez-Lopez, Appl. Catal., B 97 (1–2), 257 (2010).CrossRefGoogle Scholar
  15. 15.
    A. Romero-Perez, A. Infantes-Molina, A. Jimenez-Lopez, JalilE. Roca, K. Sapag, and E. Rodriguez-Castellon, Catal. Today 187, 88 (2012).CrossRefGoogle Scholar
  16. 16.
    S. Zhang, D. Liu, W. Deng, and G. Que, Energy Fuels 21 (6), 3057 (2007).CrossRefGoogle Scholar
  17. 17.
    M. T. Nguyen, N. T. Nguyen, J. Cho, C. Park, S. Park, J. Jung, and C. W. Lee, J. Ind. Eng. Chem. 43, 1 (2016).CrossRefGoogle Scholar
  18. 18.
    M. I. Onishchenko, A. B. Kulikov, and A. L. Maksimov, Pet. Chem. 57 (14), 1225 (2017).CrossRefGoogle Scholar
  19. 19.
    E. M. Zakharyan, M. I. Onishchenko, and A. L. Maksimov, Pet. Chem. 58 (1), 22 (2018).CrossRefGoogle Scholar
  20. 20.
    I. A. Sizova and A. L. Maksimov, Pet. Chem. 57 (7), 595 (2017).CrossRefGoogle Scholar
  21. 21.
    I. A. Sizova, S. I. Serdyukov, and A. L. Maksimov, Pet. Chem. 55 (6), 470 (2015).CrossRefGoogle Scholar
  22. 22.
    E. A. Karakhanov, A. L. Maksimov, E. A. Runova, Y. S. Kardasheva, M. F. Terenina, T. S. Buchneva, and A. Ya. Guchkova, Macromol. Symp. 204 (2003).Google Scholar
  23. 23.
    D. N. Gorbunov, A. V. Volkov, Yu. S. Kardasheva, A. L. Maksimov, and E. A. Karakhanov, Pet. Chem. 55 (8), 587 (2015).CrossRefGoogle Scholar
  24. 24.
    P. J. Dyson, D. J. Ellis, and T. Welton, Platinum Metals Rev. 42 (4), 135 (1998).Google Scholar
  25. 25.
    E. A. Karakhanov and A. L. Maksimov, Ross. Khim. Zh. 52 (4), 125 (2009).Google Scholar
  26. 26.
    L. A. Aslanov, M. A. Zakharov, and N. L. Abramycheva, Ionic Liquids in the Series of Solvents (Mosk. Univ., Moscow, 2005) [in Russian].Google Scholar
  27. 27.
    A. L. Maksimov, S. N. Kuklin, Yu. S. Kardasheva, and E. A. Karakhanov, Pet. Chem. 53 (3), 157 (2013).CrossRefGoogle Scholar
  28. 28.
    E. A. Karakhanov, A. L. Maksimov, and E. A. Runova, Russ. Chem. Rev. 74 (1), 97 (2005).CrossRefGoogle Scholar
  29. 29.
    T. Welton, Coord. Chem. Rev. 248 (21-24), 2459 (2004).CrossRefGoogle Scholar
  30. 30.
    L. M. Kustov, T. V. Vasina, and V. A. Ksenofontov, Russ. Chem. J. 43 (5), 45 (2004).Google Scholar
  31. 31.
    A. Taubert and Z. Li, Dalton Trans., No. 7, 723 (2007).Google Scholar
  32. 32.
    C. Hardacre and V. Parvulescu, Catalysis in Ionic Liquids: From Catalyst Synthesis to Application (Royal Society of Chemistry, 2014), 620 p.CrossRefGoogle Scholar
  33. 33.
    E. A. Karakhanov, A. L. Maksimov, A. V. Zolotukhina, and Yu. S. Kardasheva, Izv. Ross. Akad. Nauk, Ser. Khim. No. 7, 1465 (2013).Google Scholar
  34. 34.
    S. Kuklin, A. Maximov, A. Zolotukhina, and E. Karakhanov, Catal. Commun. 73 (5), 63 (2016).CrossRefGoogle Scholar
  35. 35.
    I. A. Sizova, S. I. Serdyukov, A. L. Maksimov, and N. A. Sinikova, Pet. Chem. 55 (1), 38 (2015).CrossRefGoogle Scholar
  36. 36.
    G. -H. Min, T. Yim, Y. H. Lee, D. H. Huh, E. Lee, J. G. Mun, S. M. Oh, and Y. G. Kim, Bull. Korean Chem. Soc. 27, 847 (2006).CrossRefGoogle Scholar
  37. 37.
    J. A. D. L. Reyes, M. Vrinat, C. Geantet, and M. Breysse, Catal. Today 10 (4), 645 (1991).CrossRefGoogle Scholar
  38. 38.
    J. A. D. L. Reyes and M. Vrinat, Appl. Catal., A 103 (1), 79.Google Scholar
  39. 39.
    R. Karthikeyan, Doctoral Dissertation, Department of Optoelectronics and Nanostructure Materials, Shizuoka Univ., 2015, 134 p.Google Scholar
  40. 40.
    K. Karthikeyan, P. Parthiban, and J. K. Sang, Electrochim. Acta 227, 85 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. I. Onishchenko
    • 1
    Email author
  • I. A. Suzova
    • 1
  • A. L. Maximov
    • 1
    • 2
  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia
  2. 2.Faculty of Chemistry, Moscow State UniversityMoscowRussia

Personalised recommendations