Advertisement

Petroleum Chemistry

, Volume 58, Issue 14, pp 1237–1244 | Cite as

Distribution Features of Products of Long-Chain Alkane Hydrogenolysis over Unpromoted Cobalt Catalysts

  • M. V. KulikovaEmail author
  • O. S. Dement’eva
  • A. E. Kuz’minEmail author
Article
  • 4 Downloads

Abstract

The experimental data on the hydrogenolysis of long-chain alkanes over suspended cobalt Fischer–Tropsch catalysts are presented which demonstrate the specific character of the molecular-mass distribution of its products (the combination of excess methane, local minimum at С3–С7 carbon chain lengths, and local maximum at С12–С16 carbon chain lengths). These results provide the experimental verification for the model of the mentioned distribution previously advanced by the authors which includes the hypothesis that the probability of С–С bond cleavage in an alkane molecule increases from the chain center to its ends. These distribution features are observed in the conversion of both alkanes of the suspension medium and individual n-alkanes (n16Н34) at different temperatures for in situ synthesized nanosized catalysts and commercial oxide samples and for n16Н34 after distillation of the hydrocarbon medium of the preliminarily suspended nanosized catalyst.

Keywords:

cobalt catalysts hydrogenolysis of alkanes molecular-mass distribution 

Notes

ACKNOWLEDGMENTS

This study, conducted at the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, was supported by the Russian Science Foundation (project no. 17-73-30046).

REFERENCES

  1. 1.
    M. V. Kulikova, O. S. Dement’eva, A. E. Kuz’min, and M. V. Chudakova, Pet. Chem. 56 (12) 1140 (2016).CrossRefGoogle Scholar
  2. 2.
    A. E. Kuz’min, M. V. Kulikova, and O. S. Dement’eva, Pet. Chem. 58 (7), 557 (2018).CrossRefGoogle Scholar
  3. 3.
    O. V. Bragin and A. L. Liberman, Conversion of Hydrocarbons on Metal-Containing Catalysts, (Khimiya, Moscow, 1981) [in Russian].Google Scholar
  4. 4.
    G. C. Bond, Metal-Catalysed Reactions of Hydrocarbons (Springer, New York, 2005).Google Scholar
  5. 5.
    G. Leclercq, S. Pietrzyk, M. Peyrovi, and M. Karroua, J. Catal. 99, 1 (1986).CrossRefGoogle Scholar
  6. 6.
    F. Regali, L. F. Liotta, A. M. Venezia, M. Boutonnet, and S. Jaras, Appl. Catal. A 469, 328 (2014).CrossRefGoogle Scholar
  7. 7.
    S. Oya, D. Kanno, H. Watanabe, M. Tamura, Y. Nakagawa, and K. Tomishige, ChemSusChem. 8, 2472 (2015).CrossRefGoogle Scholar
  8. 8.
    H. Matsumoto, Y. Saito, and Y. Yoneda, J. Catal. 22, 182 (1971).CrossRefGoogle Scholar
  9. 9.
    C. J. Machiels and R. B. Anderson, J. Catal. 58, 268 (1979).CrossRefGoogle Scholar
  10. 10.
    V. V. Lunin, V. I. Deineka, and A. F. Plate, Neftekhimiya 16, 499 (1976).Google Scholar
  11. 11.
    W. T. Osterloh., M. E Cornell, and R. J. Pettit, Am. Chem. Soc. 104, 3759 (1982).CrossRefGoogle Scholar
  12. 12.
    W. Bohringer, A. Kotsiopoulos, M. de Boer, C. Knottenbelt, and J. C. Q. Fletcher, Stud. Surf. Sci. Catal. 163, 345 (2007).CrossRefGoogle Scholar
  13. 13.
    G. Wang, C. Gao, X. Zhu, Y. Sun, C. Li, and H. Shan, ChemCatChem. 6, 2305 (2014).CrossRefGoogle Scholar
  14. 14.
    J. Weitkamp, ChemCatChem. 4, 292 (2012).CrossRefGoogle Scholar
  15. 15.
    H. Peng, K. Cheng, J. Kang, B. Gu, X. Yu, Q. Zhang, and Y. Wang, Angew. Chem., Int. Ed. Engl. 54, 4553 (2015).CrossRefGoogle Scholar
  16. 16.
    K. Cheng, L. Zhang, X. Peng, Q. Zhang, and Y. Wang, Chem. - Eur. J. 21, 1928 (2015).CrossRefGoogle Scholar
  17. 17.
    J. Kang, H. Wang, X. Peng, Y. Yang, K. Cheng, Q. Zhang, and Y. Wang, Ind. Eng. Chem. Res. 55, 13008 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia

Personalised recommendations