Petroleum Chemistry

, Volume 58, Issue 14, pp 1233–1236 | Cite as

Formation of Nanosized Low-Concentrated Cobalt-Containing Catalytic Dispersions for Three-Phase Fischer–Tropsch Synthesis During the Process of Hydrogen Activation

  • M. V. KulikovaEmail author
  • O. S. Dement’eva
  • M. I. Ivantsev
  • P. A. Chernavskii


Topochemical transformations occurring during the reduction of low-concentrated catalytic dispersions used for Fischer–Tropsch synthesis in a three-phase slurry reactor are investigated. As evidenced by dynamic light scattering and transmission electron microscopy, catalyst systems containing nanoparticles with sizes of 91 and 3 nm, respectively, are formed in systems containing cobalt at concentrations of 5 and 1 wt %. After catalyst activation via the reduction of cobalt-containing particles by hydrogen, the size of the dispersed phase is 2–3 nm regardless of the content of cobalt in the suspension. The study of magnetic properties of suspension samples in situ indicates that metallic cobalt is formed during the process of catalyst activation, as confirmed by X-ray powder diffraction analysis.


nanosized catalytic dispersions phase transitions magnetic characteristics in situ dynamic light scattering 



This work was supported by Federal Agency for Scientific Organization of Russia within the scope of State Task for the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

The work was performed using the equipment of the Center for Collective Use New Petrochemical Processes, Polymer Composites, and Adhesives.


  1. 1.
    N. E. Tsakoumis, M. Ronning, O. Borg, E. Rytter, and A. Holmen, Catal. Today 154 (3–4), 162 (2010).CrossRefGoogle Scholar
  2. 2.
    Y. Sun, Zh. Jia, G. Yang, L. Zhang, and Zh. Sun, Int. J. Hydrogen Energy 42, 29 222 (2017).CrossRefGoogle Scholar
  3. 3.
    A. O. Odunsi, T. S. O' Donovan, and D. A. Reay, Appl. Therm. Eng. 93, 1377 (2016).CrossRefGoogle Scholar
  4. 4.
    D. Selvatico, A. Lanzini, and M. Santarelli, Fuel 186, 544 (2016).CrossRefGoogle Scholar
  5. 5.
    S. N. Khadzhiev, A. S. Lyadov, M. V. Krylova, and A. Yu. Krylova, Pet. Chem. 51 (1), 24 (2011).CrossRefGoogle Scholar
  6. 6.
    S. N. Khadzhiev, Pet. Chem. 56 (6), 465 (2016).CrossRefGoogle Scholar
  7. 7.
    V. B. Tsvetkov, M. V. Kulikova, and S. N. Khadzhiev, Pet. Chem. 57 (7), 600 (2017).CrossRefGoogle Scholar
  8. 8.
    W. Chen, T. Lin, Y. Dai, Y. An, F. Yu, L. Zhong, Sh. Li, and Y. Sun, Catal. Today 311, 8 (2018).CrossRefGoogle Scholar
  9. 9.
    G. N. Bondarenko, M. V. Kulikova, A. Kh. Al’ Khazradzhi, O. S. Dement’eva, M. I. Ivantsov, and M. V. Chudakova, Pet. Chem. 56 (12), 1128 (2016).CrossRefGoogle Scholar
  10. 10.
    M. V. Kulikova, M. V. Chudakova, O. S. Dement’eva, M. I. Ivantsov, and N. V. Oknina, Pet. Chem. 56 (6), 535 (2016).CrossRefGoogle Scholar
  11. 11.
    P. A. Chernavskii, Kinet. Katal. 46 (5), 674 (2005).CrossRefGoogle Scholar
  12. 12.
    E. Patanou, N. E. Tsakoumis, R. Myrstad, and E. A. Blekkan, Appl. Catal., A 549, 280 (2018).Google Scholar
  13. 13.
    M. Rahmati, B. Huang, Jr. M. Mortensen, K. Keyvanloo, Th. Fletcher, B. Woodfield, W. Hecker, and M. Argyle, J. Catal. 359, 92 (2018).CrossRefGoogle Scholar
  14. 14.
    J.-X. Liu, P. Wang, W. Xu, and E. J. M. Hensen, Engineering 3, 467 (2017).CrossRefGoogle Scholar
  15. 15.
    L. M. Chew, W. Xia, H. Dudder, Ph. Weide, H. Ruland, and M. Muhler, Catal. Today 270, 85 (2016).CrossRefGoogle Scholar
  16. 16.
    M. V. Kulikova, O. S. Dement’eva, S. O. Ilyin, and S. N. Khadzhiev, Pet. Chem. 75 (14), 1318 (2017).CrossRefGoogle Scholar
  17. 17.
    P. A. Chernavskii, B. S. Lunin, R. A. Zakharyan, G. V. Pankina, and N. S. Perov, Prib. Tekh. Eksp. 57 (1), 119 (2014).Google Scholar
  18. 18.
    P. A. Chernavskii, G. V. Pankina, and V. V. Lunin, Rus. Chem. Rev. 80 (6), 579 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. V. Kulikova
    • 1
    Email author
  • O. S. Dement’eva
    • 1
  • M. I. Ivantsev
    • 1
  • P. A. Chernavskii
    • 1
  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia

Personalised recommendations