Advertisement

Petroleum Chemistry

, Volume 58, Issue 14, pp 1255–1262 | Cite as

Olefin Epoxidation over Metal-Organic Frameworks Modified with Transition Metals

  • D. E. Kravchenko
  • I. A. TyablikovEmail author
  • P. A. Kots
  • B. A. Kolozhvari
  • D. A. Fedosov
  • I. I. Ivanova
Article
  • 7 Downloads

Abstract

Mixed aluminum-containing metal-organic frameworks (MOF) modified with Fe, V, and Ti are synthesized in two steps. At the first step, the amorphous precursors of metal-organic frameworks containing various amounts of transition metals are obtained by the electrochemical method. At the second step, the precursors are crystallized under solvothermal conditions. Study of the effect of synthesis conditions shows that Fe-containing metal-organic frameworks crystallize in the presence of dimethylformamide; V- and Ti-containing counterparts crystallize in the presence of water. The time and temperature of crystallization are varied in the range from 150 to 200°С and 24 to 72 h depending on the concentration of the transition metals. The resulting samples are investigated by low-temperature nitrogen adsorption, scanning electron microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, and thermogravimetric and differential thermal analysis (TGA-DTA). Research into the influence of catalyst composition on its activity in 1-octene epoxidation by tert-butyl hydroperoxide suggests that that the titanium-containing samples are catalytically inactive, while the vanadium-containing samples are more active than the iron-containing ones. Testing of the vanadium-containing samples in propylene epoxidation demonstrates that their activity is comparable with the activity of a commercial titanium silicate catalyst.

Keywords:

metal-organic structures epoxidation tert-butyl hydroperoxide 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, grant no. 14-23-00094.

REFERENCES

  1. 1.
    V. V. Butova, M. A. Soldatov, A. A. Guda, K. A. Lo-machenko, and C. Lamberti, Russ. Chem. Rev. 85, 280 (2016).CrossRefGoogle Scholar
  2. 2.
    J. Gascon, A. Corma, F. Kapteijn, and F. X. Llabr’es i Xamena, ACS Catal. 4, 361 (2014).CrossRefGoogle Scholar
  3. 3.
    P. Valvekens, F. Vermoortele, and D. de Vos, Catal. Sci. Technol. 3, 1435 (2013).CrossRefGoogle Scholar
  4. 4.
    T. Zhang and W. Lin, Chem. Soc. Rev. 43, 5982 (2014).CrossRefGoogle Scholar
  5. 5.
    F. Xamena and J. Gascon, Metal Organic Frameworks as Heterogeneous Catalysts, RSC Catalysis Series, Ed. By F. Xamena and J. Gascon (Royal Society of Chemistry, Cambridge, 2013).CrossRefGoogle Scholar
  6. 6.
    Y. K. Hwang, D. Hong, J. Chang, H. Seo, M. Yoon, J. Kim, S. H. Jhung, C. Serre, and G. F’erey, Appl. Catal., A 358, 249 (2009).Google Scholar
  7. 7.
    D. Jiang, A. Urakawa, M. Yulikov, T. Mallat, G. Jeschke, and A. Baiker, Chem.–Eur. J. 15, 12 255 (2009).CrossRefGoogle Scholar
  8. 8.
    L. Chen, B. Duan, Q. Luo, Z. Gu, J. Liu, and C. Duan, Catal. Sci. Technol. 6, 1616 (2016).CrossRefGoogle Scholar
  9. 9.
    A. Schejn, L. Balan, V. Falk, L. Aranda, G. Medjahdi, and R. Schneider, Cryst. Eng. Commun. 16, 4493 (2014).CrossRefGoogle Scholar
  10. 10.
    U. Ravon, M. Savonnet, S. Aguado, M. E. Domine, E. Janneau, and D. Farrusseng, Microporous Mesoporous Mater. 129, 319 (2010).CrossRefGoogle Scholar
  11. 11.
    R. Sheldon, Metal-Catalyzed Oxidations of Organic Compounds: Mechanistic Principles and Synthetic Methodology Including Biochemical Processes (Elsevier Science, Burlington, 2012).Google Scholar
  12. 12.
    K. Leus, I. Muylaert, M. Vandichel, G. B. Marin, M. Waroquier, V. van Speybroeck, and P. van der Voort, Chem. Commun. 46, 5085 (2010).CrossRefGoogle Scholar
  13. 13.
    K. Leus, M. Vandichel, Y. Liu, I. Muylaert, J. Musschoot, S. Pyl, H. Vrielinck, F. Callens, G. B. Marin, C. Detavernier, P. V. Wiper, Y. Z. Khimyak, M. Waroquier, V. van Speybroeck, and P. van der Voort, J. Catal. 285, 196 (2012).CrossRefGoogle Scholar
  14. 14.
    N. D. McNamara, G. T. Neumann, E. T. Masko, J. A. Urban, and J. C. Hicks, J. Catal. 305, 217 (2013).CrossRefGoogle Scholar
  15. 15.
    I. J. Kang, N. A. Khan, E. Haque, and S. H. Jhung, Chemistry 17, 6437 (2011).CrossRefGoogle Scholar
  16. 16.
    A. M. Joaristi, J. Juan-Alcan˜iz, P. Serra-Crespo, F. Kapteijn, and J. Gascon, Cryst. Growth Des. 12, 3489 (2012).CrossRefGoogle Scholar
  17. 17.
    J. M. Chin, E. Y. Chen, A. G. Menon, H. Y. Tan, HorA. T. Sum, M. K. Schreyer, and J. Xu, Cryst. Eng. Commun. 15, 654 (2013).CrossRefGoogle Scholar
  18. 18.
    W. Cheng, X. Wang, G. Li, X. Guo, and S. Zhang, J. Catal. 255, 343 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. E. Kravchenko
    • 1
  • I. A. Tyablikov
    • 1
    Email author
  • P. A. Kots
    • 1
  • B. A. Kolozhvari
    • 1
    • 2
  • D. A. Fedosov
    • 1
  • I. I. Ivanova
    • 1
    • 2
  1. 1.Faculty of Chemistry, Moscow State UniversityMoscowRussia
  2. 2.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia

Personalised recommendations