Petroleum Chemistry

, Volume 58, Issue 14, pp 1165–1172 | Cite as

Hydroconversion of Oil Vacuum Distillation Residues in the Presence of Iron-Containing Catalysts In Situ Synthesized from Water-Soluble Precursors

  • Kh. M. Kadiev
  • L. A. Zekel’Email author
  • A. M. Gyul’maliev
  • A. U. Dandaev
  • M. Kh. Kadieva


The hydroconversion of tars in the presence of in situ synthesized iron-containing catalysts is studied. Water-soluble iron compounds (FeSO4, Fe(NO3)3, Fe(COOCH3)2) are used as precursors which are introduced into the processed feedstock in the composition of the aqueous phase of an inverted emulsion. The tests are conducted on a flow hydroconversion unit with a vertical hollow reactor. It is found that the catalytic activity of the Fe-containing precursors which, under hydroconversion conditions, form Fe1–xS nanosized particles, in particular, from Fe(COOCH3)2, is close to the catalytic activity of previously studied nanodispersed MoS2. A disadvantage of Fe-containing catalysts in situ synthesized from water-soluble iron compounds (FeSO4, Fe(NO3)3, Fe(COOCH3)2) is a relatively high yield of condensation products (coke) under hydroconversion conditions.


ultrafine catalyst precursor iron compounds hydroconversion 



This work was performed within the scope of State Task for the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.


  1. 1.
    H. Purón, J. L. Pinilla, C. Berrueco, J. A. M. Fuente, and M. Millaan, Energy Fuels 27 (7), 3952 (2013).CrossRefGoogle Scholar
  2. 2.
    M. R. Gray, F. Khorasheh, and S. E. Wank, Energy Fuels 6, 478 (1992).CrossRefGoogle Scholar
  3. 3.
    S. A. Shaban, H. S. Ahmed, M. F. Menoufy, and Y. Fathy, Egypt. J. Pet. 22, 367 (2013).Google Scholar
  4. 4.
    J. Bartholdy and B. Cooper, Am. Chem. Soc., Div. Pet. Chem., Prepr. 38, 386 (1993).Google Scholar
  5. 5.
    Y. D. Sun, C. H. Yang, Z. Y. Liu, and Y. D. Sun, Energy Sci. Technol. 4 (1), 34 (2012).Google Scholar
  6. 6.
    F. Diez, B. C. Gates, J. T. Miller, M. Sajkowski, and S. G. Kukes, Ind. Eng. Chem. Res., No. 9, 79 (2004).Google Scholar
  7. 7.
    S. Zhang, D. Liu, W. Deng, and G. Que, Energy Fuels 21 (6), 3057 (2007).CrossRefGoogle Scholar
  8. 8.
    M. S. Rana, V. Saґmano, J. Ancheyta, and J. A. I. Diaz, Fuel 86 (9), 1216 (2007).CrossRefGoogle Scholar
  9. 9.
    S. N. Khadzhiev and Kh. M. Kadiev, Chem. J., No. 9, 34 (2009).Google Scholar
  10. 10.
    U.S. Patent No. 4 285 804 (1981).Google Scholar
  11. 11.
    R. K. Lott, Proceeding of 7th UNITAR International Conference on Heavy Crude and Tar Sand, Beijing (Petroleum Industry Press, Beijing, 1998, Manuscript 076).Google Scholar
  12. 12.
    World Patent No. WO 2 004 056 946 (2004).Google Scholar
  13. 13.
    U.S. Patent No. 20 030 089 636 (2003).Google Scholar
  14. 14.
    G. Bellussi, G. Rispoli, D. Molinari, A. Landoni, P. Pollesel, N. Panariti, R. Millini, and E. Montanari, J. Catal. 308, 189 (2013).CrossRefGoogle Scholar
  15. 15.
    L. Dong, C. Wenlong, Z. Shuyi, and Q. Guohe, Energy Fuels 22, 4165 (2008).CrossRefGoogle Scholar
  16. 16.
    N. Panariti, A. Del Bianco, G. Del Piero, and M. Marchionna, Appl. Catal. 204, 203 (2000).CrossRefGoogle Scholar
  17. 17.
    Y. Nakao, S. Yokoyama, Y. Maekawa, and K. Kaeriyama, Fuel 63, 7211 (1984).CrossRefGoogle Scholar
  18. 18.
    A. S. Bommannavar and P. A. Montano, Fuel 62, 932 (1983).CrossRefGoogle Scholar
  19. 19.
    P. A. Montano, A. S. Bommannavar, and V. Shah, Fuel 60, 703 (1981).CrossRefGoogle Scholar
  20. 20.
    H. F. Ades, A. L. Companion, and K. R. Subbaswamy, Energy Fuels 8, 71 (1994).CrossRefGoogle Scholar
  21. 21.
    P.A. Montano and A.S. Bommannavar, J. Mol. Catal. 20, 393 (1983).CrossRefGoogle Scholar
  22. 22.
    S. Vasireddy, B. Morreale, A. Cugini, Ch. Song, and J. J. Spivey, Energy Environ. Sci., No. 4, 311 (2011).Google Scholar
  23. 23.
    R. Shen, C. Liu, and G. Que, Pet. Process. Petrochem., No. 11, 58 (1998).Google Scholar
  24. 24.
    Kh. M. Kadiev, L. A. Zekel’, A. M. Gyul’maliev, A. U. Dandaev, and M. Kh. Kadieva, Pet. Chem. 59 (in press).Google Scholar
  25. 25.
    A. Matsumura, T. Kondo, S. Sato, and I. Saito, Fuel 84, 411 (2005).CrossRefGoogle Scholar
  26. 26.
    U. Graeser, G. Eschet, and R. Holighnaus, in Proceedings of the Refining Department, American Petroleum Institute, San Diego, CA, United States, 1986, p. 169.Google Scholar
  27. 27.
    U.S. Patent No. 4 999 328 (1991).Google Scholar
  28. 28.
    N. K. Benham and B. B. Pruden, in National Petroleum Refiners Association Annual Meeting, San Antonio, TX, United States, 1996.Google Scholar
  29. 29.
    Kh. M. Kadiev, S. N. Khadzhiev, and M. Kh. Kadieva, Pet. Chem. 53 (5), 298 (2013).CrossRefGoogle Scholar
  30. 30.
    HSC Chemistry 6, Scholar
  31. 31.
    V. N. Doroshenko, V. N. Kaurkovskaya, and E. P. Yakubenko, High Energy Chem. 36 (3), 157 (2002).CrossRefGoogle Scholar
  32. 32.
    F. X. Redl, C. T. Blak, G. C. Papaefthymiou, R. Sandstrom, M. Yin, and H. Zeng, J. Am. Chem. Soc. 126, 14 583 (2004).CrossRefGoogle Scholar
  33. 33.
    M. H. Habibi and N. J. Kiani, Therm. Anal. Calorim, No. 112, 573 (2013).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Kh. M. Kadiev
    • 1
  • L. A. Zekel’
    • 1
    Email author
  • A. M. Gyul’maliev
    • 1
  • A. U. Dandaev
    • 1
  • M. Kh. Kadieva
    • 1
  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia

Personalised recommendations