Advertisement

Petroleum Chemistry

, Volume 58, Issue 14, pp 1221–1226 | Cite as

Nanostructured Ruthenium Catalysts in Hydrogenation of Aromatic Compounds

  • A. P. GlotovEmail author
  • A. V. Stavitskaya
  • Ya. A. Chudakov
  • M. I. Artemova
  • E. M. Smirnova
  • N. R. Demikhova
  • T. N. Shabalina
  • A. A. Gureev
  • V. A. Vinokurov
Article
  • 18 Downloads

Abstract

Ru-containing catalysts based on aluminosilicate halloysite nanotubes (HNTs) are synthesized by preliminary functionalization of the support surface by aminopropyltriethoxysilane (APTES) followed by the microwave-assisted deposition of ruthenium to provide the intercalation of metal nanoparticles into the inner space of nanotubes. The composition and structure of the synthesized catalysts are studied by X-ray fluorescent analysis, low-temperature nitrogen adsorption/desorption, transmission electron microscopy, and hydrogen temperature-programmed reduction. The activity of the catalysts in benzene hydrogenation at a temperature of 80°С and a hydrogen pressure of 3 MPa both in the hydrocarbon medium and in the two-phase system with water is studied. It is shown that, in the presence of water, the hydrogenating activity of the catalyst based on modified halloysite nanotubes is considerably higher than that of the sample prepared using the initial halloysite as a support.

Keywords:

halloysite hydrogenation aromatic compounds ruthenium nanoparticles benzene cyclohexane 

Notes

ACKNOWLEDGMENTS

This work was supported by the Ministry of Education and Science of the Russian Federation (unique project identifier RFMEFI57717X0239; agreement no. 14.577.21.0239).

REFERENCES

  1. 1.
    M. L. Zou, M. L. Du, M. Zhang, T. T. Yang, H. Zhu, P. Wang, and S. Y. Bao, Mater. Res. Bull., 375 (2015).Google Scholar
  2. 2.
    Z. L. Cheng and W. Sun, Chin. Chem. Lett. 27, 81 (2016).CrossRefGoogle Scholar
  3. 3.
    G. K. Dedzo, G. Ngnie, and C. Detellier, ACS Appl. Mater. Interfaces, No. 8, 4862 (2016).Google Scholar
  4. 4.
    C. Milone, G. Neri, A. Donato, M. G. Musolino, L. Mercadante, J. Catal. 159, 253 (1996).CrossRefGoogle Scholar
  5. 5.
    B. Zhang, Q. Wu, C. Zhang, X. Su, R. Shi, W. Lin, Y. Li, and F. Zhao, ChemCatChem. 9, 3646 (2017).CrossRefGoogle Scholar
  6. 6.
    A. D. Dwivedi, R. K. Rai, K. Gupta, and S. K. Singh, ChemCatChem. 9, 1930 (2017).CrossRefGoogle Scholar
  7. 7.
    Y. Lvov, W. C. Wang, L. Q. Zhang, and R. Fakhrullin, Adv. Mater. 28, 1227 (2016).CrossRefGoogle Scholar
  8. 8.
    V. A. Vinokurov, A. V. Stavitskaya, Y. A. Chudakov, A. P. Glotov, E. V. Ivanov, P. A. Gushchin, Y. M. Lvov, A. L. Maximov, A. V. Muradov, and E. A. Karakhanov, Pure Appl. Chem. 90, 825 (2018).CrossRefGoogle Scholar
  9. 9.
    V. A. Vinokurov, A. V. Stavitskaya, A. P. Glotov, A. A. Novikov, A. V. Zolotukhina, M. S. Kotelev, P. A. Gushchin, E. V. Ivanov, Y. Darrat, and Y. M. Lvov, Chemical Record, No. 18, 858 (2018).CrossRefGoogle Scholar
  10. 10.
    A. M. Carrillo and J. G. Carriazo, Appl. Catal., B 164, 443 (2015).CrossRefGoogle Scholar
  11. 11.
    A. B. Utelbaeva, M. N. Ermakhanov, N. Zh. Zhanabai, B. T. Utelbaev, and A. A. Mel’deshov, Russ. J. Phys. Chem. 87, 1486 (2013).CrossRefGoogle Scholar
  12. 12.
    M. V. Vasylyev, G. Maayan, Y. Hovav, A. Haimov, and R. Neumann, Org. Lett. 8 (24), 5445 (2006).CrossRefGoogle Scholar
  13. 13.
    T. T. Yang, M. L. Du, M. Zhang, H. Zhu, P. Wang, and M. L. Zou, Nanomater. Nanotechnol. 5, 9 (2015).CrossRefGoogle Scholar
  14. 14.
    V. A. Vinokurov, A. V. Stavitskaya, Y. A. Chudakov, E. V. Ivanov, L. K. Shrestha, K. Ariga, Y. A. Darrat, and Y. M. Lvov, Sci. Technol. Adv. Mater. 18, 147 (2017).CrossRefGoogle Scholar
  15. 15.
    L. Wang, J. L. Chen, L. Ge, V. Rudolph, and Z. H. Zhu, J. Phys. Chem. B, No. 117, 4141 (2013).Google Scholar
  16. 16.
    E. Karakhanov, A. Maximov, A. Zolotukhina, A. Mamadli, A. Vutolkina, and A. Ivanov, Catalysts 7, 26 (2017).CrossRefGoogle Scholar
  17. 17.
    G. Glaspell, L. Fuoco, and M. S. El-Shall, J. Phys. Chem. B 109, 17 350 (2005).CrossRefGoogle Scholar
  18. 18.
    V. Mazzieri, F. Coloma-Pascual, A. Arcoya, P. C. L’Argentiere, and N. S. Fi’goli, Appl. Surf. Sci. 210, 222 (2003).CrossRefGoogle Scholar
  19. 19.
    P. Kluson and L. Cerveny, App. Catal., A 128, 13 (1995).Google Scholar
  20. 20.
    A. Maximov, A. Zolotukhina, L. Kulikov, Y. Kardasheva, and E. Karakhanov, React. Kinet. Mech. Catal. 117, 729 (2016).CrossRefGoogle Scholar
  21. 21.
    R. von Klitzing, D. Stehl, T. Pogrzeba, R. Schomacker, R. Minullina, A. Panchal, S. Konnova, R. Fakhrullin, J. Koetz, H. Mohwald, M. Pleine, and T. N. Zemb, Adv. Mater. Interfaces 4, 1 600 435 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. P. Glotov
    • 1
    • 2
    Email author
  • A. V. Stavitskaya
    • 1
  • Ya. A. Chudakov
    • 1
  • M. I. Artemova
    • 1
  • E. M. Smirnova
    • 1
  • N. R. Demikhova
    • 1
  • T. N. Shabalina
    • 1
  • A. A. Gureev
    • 1
  • V. A. Vinokurov
    • 1
  1. 1.Gubkin Russian State University of Oil and Gas (National Research University)MoscowRussia
  2. 2.Faculty of Chemistry, Moscow State UniversityMoscowRussia

Personalised recommendations