Advertisement

Petroleum Chemistry

, Volume 58, Issue 13, pp 1154–1158 | Cite as

Sorption and Nanofiltration Characteristics of PIM-1 Material in Polar and Non-Polar Solvents

  • A. A. Yushkin
  • T. S. Anokhina
  • S. D. Bazhenov
  • I. L. Borisov
  • P. M. Budd
  • A. V. Volkov
Article
  • 1 Downloads

Abstract

The affinity of polar extractants (propylene carbonate, dimethylsulfoxide, dimethylformamide, triethylene glycol and dimethylacetamide) and benzene, toluene, p-xylene and m-xylene (so-called BTX fraction) for PIM-1 material was evaluated. The mass-transfer coefficients of selected solvents were determined in organic solvent nanofiltration process. All solvents showed a good affinity toward PIM-1 polymer; while the large values of sorption and PIM-1 swelling degree were in the case of benzene (1.63 g/g, 192%), toluene (1.72 g/g, 186%) and xylenes (1.61–1.76 g/g, 147–170%); while these values for selected polar solvents were in the range of 1.09–1.48 g/g and 83–108%, respectively. The values of sorption and swelling degree were successfully correlated with Hansen’s solubility parameters. Values of permeability coefficients of nonpolar solvents through PIM-1 membranes were 1.5–5.5 times higher than those for polar solvents. With increasing affinity of the solvent toward polymer, the values of the permeability coefficients also increased.

Keywords:

PIM-1 the polymer of intrinsic microporosity nanofiltration sorption Hansen solubility parameter 

Notes

ACKNOWLEDGMENTS

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, project 14.616.21.0100 (project identifier RFMEFI61618X0100). This work is supported by an Institutional Links grant 351983438. The grant is funded by the British Council and the Ministry of Science and Higher Education of the Russian Federation.

REFERENCES

  1. 1.
    Z. Shen, X. Zhang, X. Ma, et al., Sens. Actuators, B 262, 86 (2018).CrossRefGoogle Scholar
  2. 2.
    A. Szczurek, M. Maziejuk, M. Maciejewska, et al., Sens. Actuators, B 240, 1237 (2017).CrossRefGoogle Scholar
  3. 3.
    K. H. Kim, S. K. Pandey, and R. Pal, J. Sep. Sci. 32, 549 (2009).CrossRefGoogle Scholar
  4. 4.
    E. Gallego, F. X. Roca, X. Guardino, and M. G. Rosell, J. Environ. Sci. 20, 1063 (2008).CrossRefGoogle Scholar
  5. 5.
    A. Mirzaei, S. G. Leonardi, and G. Neri, Ceram. Int. 42, 15119 (2016).CrossRefGoogle Scholar
  6. 6.
    A. Schnatter, P. J. Kerzic, Y. Zhou, et al., Chem. Biol. Interact. 184, 174 (2010).CrossRefGoogle Scholar
  7. 7.
    A. Andrejeva, A. M. Gardner, W. D. Tuttle, and T. G. Wright, J. Mol. Spectrosc. 321, 28 (2016).CrossRefGoogle Scholar
  8. 8.
    Extractive Dearomatization of Petroleum Fractions, Ed. by A. A. Gaile and V. E. Somov (Izd. St. Petersburg Gos. Univ., St. Petersburg, 2002) [in Russian].Google Scholar
  9. 9.
    A. A. Gaile, V. E. Somov, and O. M. Varshavskii, Aromatic Hydrocarbons: Isolation. Appication, and Market (Khimizdat, St. Petersburg, 2000) [in Russian].Google Scholar
  10. 10.
    O. Stewart and L. Minnear, Sulfolane Technical Assistance and Evaluation Report (Oasis Environmental, Anchorage, 2010).Google Scholar
  11. 11.
    P. Marchetti, M. F. Jimenez Solomon, G. Szekely, and A. G. Livingston, Chem. Rev. 114, 10735 (2014).CrossRefGoogle Scholar
  12. 12.
    L. S. White, J. Membr. Sci. 286, 26 (2006).CrossRefGoogle Scholar
  13. 13.
    P. M. Budd, E. S. Elabas, B. S. Ghanem, et al., Adv. Mater.16, 456 (2004).CrossRefGoogle Scholar
  14. 14.
    S. Tsarkov, V. Khotimsky, P. M. Budd, et al., J. Membr. Sci. 423–424, 65 (2012).CrossRefGoogle Scholar
  15. 15.
    B. Satilmis and P. M. Budd, J. Colloid Interface Sci. 492, 81 (2017).Google Scholar
  16. 16.
    T. S. Anokhina, A. A. Yushkin, P. M. Budd, and A. V. Volkov, Sep. Purif. Technol. 156, 683 (2015).CrossRefGoogle Scholar
  17. 17.
    D. Fritsch, P. Merten, K. Heinrich, et al., J. Membr. Sci. 401, 222 (2012).CrossRefGoogle Scholar
  18. 18.
    L. Gao, M. Alberto, P. Gorgojo, et al., J. Membr. Sci. 529, 207 (2017).CrossRefGoogle Scholar
  19. 19.
    S. V. Adymkanov, A. M. Polyakov, P. M. Budd, et al., Polym. Sci., Ser. A 50, 444 (2008).CrossRefGoogle Scholar
  20. 20.
    P. M. Budd, N. B. McKeown, B. S. Ghanem, et al., J. Membr. Sci. 325, 851 (2008).CrossRefGoogle Scholar
  21. 21.
    N. Du, G. P. Robertson, J. Song, et al., Macromolecules 41, 9656 (2008).CrossRefGoogle Scholar
  22. 22.
    A. Yushkin, A. Grekhov, S. Matson, et al., React. Funct. Polym. 86, 269 (2015).CrossRefGoogle Scholar
  23. 23.
    C. M. Hansen, Hansen Solubility Parameters: A User’s Handbook (CRC, Boca Raton, 2002).Google Scholar
  24. 24.
    S. Thomas, I. Pinnau, N. Du, and M. D. Guiver, J. Membr. Sci. 333, 125 (2009).CrossRefGoogle Scholar
  25. 25.
    A. Malakhov and A. Volkov, Sep. Sci. Technol. 50, 2198 (2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Yushkin
    • 1
  • T. S. Anokhina
    • 1
  • S. D. Bazhenov
    • 1
  • I. L. Borisov
    • 1
  • P. M. Budd
    • 2
  • A. V. Volkov
    • 2
  1. 1.A.V. Topchiev Institute of Petrochemical Synthesis Russian Academy of SciencesMoscowRussia
  2. 2.School of Chemistry, The University of ManchesterManchesterUK

Personalised recommendations