Petroleum Chemistry

, Volume 58, Issue 13, pp 1144–1153 | Cite as

A Comparative Study of the Transport Properties of Homogeneous and Heterogeneous Cation-Exchange Membranes Doped with Zirconia Modified with Phosphoric Acid Groups

  • P. A. Yurova
  • I. A. SteninaEmail author
  • A. B. Yaroslavtsev


Composite materials based on MF-4SK membranes (Plastpolimer, Russia), a membrane foil (Mega, Czech Republic), and phosphate-modified zirconia been synthesized; the transport properties of the composites in the proton and potassium forms have been studied. It has been found that the degree of doping of the heterogeneous membranes can be significantly higher than that of the homogeneous samples. It has been shown that the surface modification of zirconia with phosphate groups results in increase in the conductivity (from 0.0029 to 0.011 S/cm) and selectivity of transport processes improvement (from 0.068 to 0.009) in the membrane foil. Differences in the observed values of conductivity and mutual diffusion coefficient of the membranes in the hydrogen and potassium forms have been discussed taking into account the possible ion transport mechanisms.


cation-exchange membranes hybrid membranes nanocomposite materials ionic conductivity diffusion coefficients zirconia 



This work was supported by the Russian Science Foundation, project no. 16-13-00127.


  1. 1.
    R. W. Baker, Membrane Technology and Applications, 2nd Ed. (Wiley, Chichester, 2004).CrossRefGoogle Scholar
  2. 2.
    B. Kattouf, Y. Ein-Eli, A. Siegmann, and G. L. Frey, J. Mater. Chem. C 1, 151 (2013).CrossRefGoogle Scholar
  3. 3.
    A. Kusoglu and A. Z. Weber, Chem. Rev. 117, 987 (2017).CrossRefGoogle Scholar
  4. 4.
    E. Bakangura, L. Wu, L. Ge, et al., Prog. Polym. Sci. 57, 103 (2016).CrossRefGoogle Scholar
  5. 5.
    A. B. Yaroslavtsev, Nanotechnol. Russ. 7, 437 (2012).CrossRefGoogle Scholar
  6. 6.
    D. J. Kim, M. JaeJo, and S. YongNam, J. Ind. Eng. Chem. 21, 36 (2015).CrossRefGoogle Scholar
  7. 7.
    D. J. Jones and J. Roziere, Handbook of Fuel Cells: Fundamentals, Technology and Applications, vol. 3: Fuel Cell Technology and Applications, Ed. by W. Vielstich, A. Lamm, and H. A. Gasteiger (Wiley, Hoboken, 2003), p. 447.Google Scholar
  8. 8.
    M. Amjadi, S. Rowshanzamir, S. J. Peighambardoust, and S. Sedghi, J. Power Sources 210, 350 (2012).CrossRefGoogle Scholar
  9. 9.
    J. Chabé, M. Bardet, and G. Gébel, Solid State Ionics 229, 20 (2012).CrossRefGoogle Scholar
  10. 10.
    A. Mahreni, A. B. Mohamad, A. A. H. Kadhum, et al., J. Membr. Sci. 327, 32 (2009).CrossRefGoogle Scholar
  11. 11.
    L. G. Boutsika, A. Enotiadis, I. Nicotera, et al., Int. J. Hydrogen Energy 41, 22406 (2016).CrossRefGoogle Scholar
  12. 12.
    E. Yu. Voropaeva, E. A. Sanginov, V. I. Volkov, et al., Russ. J. Inorg. Chem. 53, 1536 (2008).CrossRefGoogle Scholar
  13. 13.
    J. Pan, H. Zhang, W. Chen, and M. Pan, Int. J. Hydrogen Energy 35, 2796 (2010).CrossRefGoogle Scholar
  14. 14.
    M. Taghizadeh and M. Vatanparast, J. Colloid Interface Sci. 483, 1 (2016).CrossRefGoogle Scholar
  15. 15.
    G. A. Giffin, M. Piga, S. Lavina, et al., J. Power Sources 198, 66 (2012).CrossRefGoogle Scholar
  16. 16.
    Y. Zhai, H. Zhang, J. Hu, and B. Yi, J. Membr. Sci. 280, 148 (2006).CrossRefGoogle Scholar
  17. 17.
    S. Ren, G. Sun, Ch. Li, et al., J. Power Sources 157, 724 (2006).CrossRefGoogle Scholar
  18. 18.
    A. D’Epifanio, M. Assunta Navarra, F. Ch. Weise, et al., Chem. Mater. 22, 813 (2010).CrossRefGoogle Scholar
  19. 19.
    I. G. Wenten and Khoiruddin, J. Eng. Sci. Technol. 11, 916 (2016).Google Scholar
  20. 20.
    R. Singh and N. Hankins, Emerging Membrane Technology for Sustainable Water Treatment (Elsevier, Amsterdam, 2016).Google Scholar
  21. 21.
    J. Křivčík, D. Nedĕla, J. Hadrava, and L. Brožová, Desalin. Water Treat. 56, 3160 (2015).Google Scholar
  22. 22.
    K.-D. Kreuer, J. T. Hynes, J. P. Klinman, et al., Hydrogen-Transfer Reactions, Ed. by J. T. Hynes, J. P. Klinman, H. H. Limbach and R. L. Schowen (Wiley–VCH, Weinhem, 2007), vol. 1, p. 709.Google Scholar
  23. 23.
    K. A. Mauritz and R. B. Moore, Chem. Rev. 104, 4535 (2004).CrossRefGoogle Scholar
  24. 24.
    S. M. Ibrahim, E. H. Price, and R. A. Smith, Proc.—Electrochem. Soc., 83-6, 206 (1983).Google Scholar
  25. 25.
    M. A. Hickner, H. Ghassemi, Y. S. Kim, et al., Chem. Rev. 104, 4587 (2004).CrossRefGoogle Scholar
  26. 26.
    S. Rabiej and A. Wlochowicz, Angew. Makromolek. Chem. 175 (2920), 81 (1990).CrossRefGoogle Scholar
  27. 27.
    D. V. Golubenko, P. A. Yurova, Yu. A. Karavanova, and I. A. Stenina, Inorg. Mater. 53, 1053 (2017).CrossRefGoogle Scholar
  28. 28.
    A. B. Yaroslavtsev, Yu. A. Karavanova, and E. Yu. Sa-fronova, Pet. Chem. 51, 473 (2011).CrossRefGoogle Scholar
  29. 29.
    V. V. Nikonenko, A. B. Yaroslavtsev, and G. Pourcelly, Ionic Interactions in Natural and Synthetic Macromolecules, Ed. by A. Ciferri and A. Perico (Wiley, Hoboken, NJ, 2012), p. 267.Google Scholar
  30. 30.
    V. V. Nikonenko, N. D. Pismenskaya, E. I. Belova, et al., Adv. Colloid Interface Sci. 160, 101 (2010).CrossRefGoogle Scholar
  31. 31.
    D. V. Golubenko and A. B. Yaroslavtsev, Mendeleev Commun. 27, 572 (2017).CrossRefGoogle Scholar
  32. 32.
    I. A. Stenina and A. B. Yaroslavtsev, Inorg. Mater. 53, 253 (2017).CrossRefGoogle Scholar
  33. 33.
    N. Kononenko, V. Nikonenko, D. Grandeb, et al., Adv. Colloid Interface Sci. 246, 196 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • P. A. Yurova
    • 1
  • I. A. Stenina
    • 1
    Email author
  • A. B. Yaroslavtsev
    • 1
  1. 1.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations