Advertisement

Petroleum Chemistry

, Volume 58, Issue 13, pp 1133–1143 | Cite as

Effect of Dispersity of a Sulfonated Cation-Exchanger on the Current–Voltage Characteristics of Heterogeneous Membranes Ralex CM Pes

  • V. I. Vasil’evaEmail author
  • E. M. Akberova
  • V. I. Zabolotsky
  • L. Novak
  • D. V. Kostylev
Article
  • 30 Downloads

Abstract

The influence of the electrical and geometrical heterogeneity of the surface of heterogeneous sulfonated cation-exchange membranes on their current–voltage characteristic (CVC) has been experimentally studied. The objects of the study have been experimental samples of Ralex CM Pes membranes manufactured by MEGA a.s. (Czech Republic). A series of experimental membranes Ralex has been produced by hot rolling using an ion-exchanger with different particle sizes. The particle size of the ion-exchanger was controlled by its milling time from 5 to 80 min. It has been found that in the swollen state of the membranes, the ratio of conducting (ion-exchanger particles) and inert (polyethylene) areas on the membrane surface remains constant regardless of the milling time of the sulfonated cation-exchanger. At the same time, the dimensions of the conductive areas and the distance between them decreased and the surface microrelief became smoother. The influence of changes in the membrane surface properties on the CVC parameters has been revealed. With an increase in the ion-exchanger milling time corresponding to a decrease in the spacing of electrical heterogeneity of the surface, a reduction in the length of limiting-current plateau and a decrease in the resistance of the second and third regions on the current–voltage curve were observed. It has been assumed that the main cause of changes in the current–voltage characteristics is an increase in the intensity of heteroelectroconvection.

Keywords:

sulfonated cation-exchange membrane surface heterogeneity current–voltage characteristic limiting current electroconvection 

Notes

ACKNOWLEDGMENTS

This work was supported by the President of the Russian Federation, grant no. MK-925.2018.3.

The photomicrographs and AFM images of the membrane surface were obtained on the equipment of the Collective Use Center of Voronezh State University. URL: http://ckp.vsu.ru.

REFERENCES

  1. 1.
    V. I. Zabolotskii, L. Novak, A. V. Kovalenko, et al., Pet. Chem. 57, 779 (2017).CrossRefGoogle Scholar
  2. 2.
    V. I. Zabolotskii, V. V. Nikonenko, M. Kh. Urtenov, et al., Russ. J. Electrochem. 48, 692 (2012).CrossRefGoogle Scholar
  3. 3.
    V. V. Nikonenko, S. A. Mareev, N. D. Pis’menskaya, et al., Russ. J. Electrochem. 53, 1122 (2017).CrossRefGoogle Scholar
  4. 4.
    V. V. Nikonenko, N. D. Pismenskaya, E. I. Belova, et al., Adv. Colloid Interface Sci. 160, 101 (2010).CrossRefGoogle Scholar
  5. 5.
    N. D. Pis’menskaya, V. V. Nikonenko, N. A. Mel’nik, et al., Russ. J. Electrochem. 48, 610 (2012).CrossRefGoogle Scholar
  6. 6.
    V. I. Vasil’eva, E. M. Akberova, and V. I. Zabolotskii, Russ. J. Electrochem. 53, 398 (2017).CrossRefGoogle Scholar
  7. 7.
    V. I. Vasil’eva, A. V. Zhil’tsova, E. M. Akberova, and A. I. Fataeva, Kondens. Sredy Mezhfaz. Granitsy 16, 257 (2014).Google Scholar
  8. 8.
    E. V. Knyaginicheva, E. D. Belashova, V. V. Sarapulova, and N. D. Pis’menskaya, Kondens. Sredy Mezhfaz. Granitsy 16, 282 (2014).Google Scholar
  9. 9.
    V. V. Nikonenko, A. V. Kovalenko, M. K. Urtenov, et al., Desalination 342, 85 (2014).CrossRefGoogle Scholar
  10. 10.
    N. P. Berezina, Electrochemistry of Membrane Systems (Kubanskii Gos. Univ., Krasnodar, 2009) [in Russian].Google Scholar
  11. 11.
    I. Rubinstein and B. Zaltzman, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 62, 2238 (2000).Google Scholar
  12. 12.
    I. Rubinstein, B. Zaltzman, I. Prets, and K. Linder, Russ. J. Electrochem. 38, 864 (2002).CrossRefGoogle Scholar
  13. 13.
    R. Ibanez, D. F. Stamatialis, and M. Wessling, J. Membr. Sci. 239, 119 (2004).CrossRefGoogle Scholar
  14. 14.
    V. I. Vasil’eva, A. V. Zhil’tsova, M. D. Malykhin, et al., Russ. J. Electrochem. 50, 120 (2014).CrossRefGoogle Scholar
  15. 15.
    J.-H. Choi, H.-J. Lee, and S.-H. Moon, J. Colloid Interface Sci. 238, 188 (2001).CrossRefGoogle Scholar
  16. 16.
    Y.-J. Choi, M. -S. Kang, S.-H. Kim, et al., J. Membr. Sci. 223, 201 (2003).CrossRefGoogle Scholar
  17. 17.
    E.-Y. Choi, H. Strathmann, J.-M. Park, and S.‑H. Moon, J. Membr. Sci. 268, 165 (2006).CrossRefGoogle Scholar
  18. 18.
    V. V. Gil, M. A. Andreeva, N. D. Pismenskaya, et al., Pet. Chem. 56, 440 (2016).CrossRefGoogle Scholar
  19. 19.
    N. A. Mishchuk and S. S. Dukhin, Khim. Tekhnol. Vody 13, 963 (1991).Google Scholar
  20. 20.
    A. V. Zhil’tsova, V. I. Vasil’eva, M. D. Malykhin, et al., Vestn. VGU, Ser: Khim. Biol. Farm, No. 2, 35 (2013).Google Scholar
  21. 21.
    V. I. Zabolotskii, V. V. Bugakov, M. V. Sharafan, and R. Kh. Chermit, Russ. J. Electrochem. 48, 650 (2012).CrossRefGoogle Scholar
  22. 22.
    J. H. Choi, S. H. Kim, and S. H. Moon, J. Colloid Interface Sci. 241, 120 (2001).CrossRefGoogle Scholar
  23. 23.
    E. Volodina, N. Pismenskaya, V. Nikonenko, et al., J. Colloid Interface Sci. 285, 247 (2005).CrossRefGoogle Scholar
  24. 24.
    I. Rubinstein, B. Zaltzman, and O. Kedem, J. Membr. Sci. 125, 17 (1997).CrossRefGoogle Scholar
  25. 25.
    A. V. Kovalenko, V. I. Zabolotskii, V. V. Nikonenko, and M. Kh. Urtenov, Politemat. Set. Elektron. Nauchn. Zh. Kubansk. Gos. Agr. Univ., No. 104 (2014).Google Scholar
  26. 26.
    M. K. Urtenov, A. M. Uzdenova, A. V. Kovalenko, et al., J. Membr. Sci. 447, 190 (2013).CrossRefGoogle Scholar
  27. 27.
    K. A. Nebavskaya, D. Yu. Butylskii, I. A. Moroz, et al., Pet. Chem. 58, 780 (2018).CrossRefGoogle Scholar
  28. 28.
    E. Korzhova, N. Pismenskaya, D. Lopatin, et al., J. Membr. Sci. 500, 161 (2016).CrossRefGoogle Scholar
  29. 29.
    S. M. Davidson, M. Wessling, and A. Mani, Sci. Rep. 6, 22505 (2016).CrossRefGoogle Scholar
  30. 30.
    R. Ibanez, D. F. Stamatialis, and M. Wessling, J. Membr. Sci. 239, 119 (2004).CrossRefGoogle Scholar
  31. 31.
    J. Balster, M. H. Yildirim, D. F. Stamatialis, et al., J. Phys. Chem. B 111, 2152 (2007).CrossRefGoogle Scholar
  32. 32.
    S. A. Loza, V. I. Zabolotsky, N. V. Loza, and M. A. Fomenko, Pet. Chem. 56, 1038 (2016).CrossRefGoogle Scholar
  33. 33.
    E. M. Akberova, V. I. Vasil’eva, and M. D. Malykhin, Condens. Matter Interph 17, 273 (2015).Google Scholar
  34. 34.
    E. M. Akberova, Condens. Matter Interph 19, 314 (2017).Google Scholar
  35. 35.
    I. Rubinstein, B. Zaltzman, and T. Pundik, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 65, 041507 (2002).Google Scholar
  36. 36.
    S. S. Dukhin and N. A. Mishchuk, J. Membr. Sci. 79, 199 (1993).CrossRefGoogle Scholar
  37. 37.
    N. A. Mishchuk, Curr. Opin. Colloid Interface Sci. 18, 137 (2013).CrossRefGoogle Scholar
  38. 38.
    E. D. Belashova, N. A. Melnik, N. D. Pismenskaya, et al., Electrochim. Acta 59, 412 (2012).CrossRefGoogle Scholar
  39. 39.
    N. D. Pismenskaya, V. V. Nikonenko, N. A. Mel’nik, et al., Pet. Chem. 51, 610 (2011).CrossRefGoogle Scholar
  40. 40.
    www.mega.cz. Accessed March 12, 2018.Google Scholar
  41. 41.
    N. P. Berezina, N. A. Kononenko, G. A. Dvorkina, and N. V. Shel’deshov, Physicochemical Properties of ion-exchange Membranes (Kubanskii Gos. Univ., Krasnodar, 1999) [in Russian].Google Scholar
  42. 42.
    V. I. Vasil’eva, E. M. Akberova, M. D. Malykhin, and E. A. Goleva, RU Patent No. 162966 (2016).Google Scholar
  43. 43.
    F. Maletzki, H.-W. Rosler, and E. J. Staude, J. Membr. Sci. 71, 105 (1992).CrossRefGoogle Scholar
  44. 44.
    N. D. Pismenskaya, V. V. Nikonenko, E. I. Belova, et al., Russ. J. Electrochem. 43, 307 (2007).CrossRefGoogle Scholar
  45. 45.
    J. Newman and K. E. Thomas-Alyea, Electrochemical Systems (Wiley, New York, 2004).Google Scholar
  46. 46.
    V. I. Vasil’eva, E. M. Akberova, A. V. Zhiltsova, et al., J. Surf. Investig. X-ray Synchrotron Neutron Tech., No. 7, 833 (2013).CrossRefGoogle Scholar
  47. 47.
    V. I. Vasil’eva, N. D. Pismenskaya, E. M. Akberova, and K. A. Nebavskaya, Russ. J. Phys. Chem. A 88, 1293 (2014).CrossRefGoogle Scholar
  48. 48.
    E. A. Sirota, N. A. Kranina, V. I. Vasil’eva, et al., Vestn. VGU, Ser: Khim. Biol. Farm., No. 2, 53 (2011).Google Scholar
  49. 49.
    N. L. Glinka, General Chemistry (Khimiya, Leningrad, 1987) [in Russian].Google Scholar
  50. 50.
    V. I. Vasil’eva, N. A. Kranina, M. D. Malykhin, et al., J. Surf. Investig. X-ray Synchrotron Neutron Tech., No. 7, 144 (2013).CrossRefGoogle Scholar
  51. 51.
    V. I. Vasil’eva, O. V. Grigorchuk, and V. A. Shaposhnik, Desalination 192, 401 (2006).CrossRefGoogle Scholar
  52. 52.
    I. Rubinstein and B. Zaltzman, Math. Models Methods Appl. Sci. 11, 263 (2001).CrossRefGoogle Scholar
  53. 53.
    A. M. Uzdenova, A. V. Kovalenko, and M. Kh. Urtenov, Politem. Set. Elektron. Nauchn. Zh. Kubansk. Gos. Agra. Unive., No. 72 (2011).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. I. Vasil’eva
    • 1
    Email author
  • E. M. Akberova
    • 1
  • V. I. Zabolotsky
    • 2
  • L. Novak
    • 3
  • D. V. Kostylev
    • 1
  1. 1.Voronezh State UniversityVoronezhRussia
  2. 2.Kuban State UniversityKrasnodarRussia
  3. 3.Mega a.s.Stráž pod RalskemCzech Republic

Personalised recommendations