Advertisement

Petroleum Chemistry

, Volume 58, Issue 13, pp 1113–1122 | Cite as

Novel Membrane Material Based on Polybutadiene and Polydimethylsiloxane for Gas Separation and Hydrophobic Pervaporation

  • I. L. BorisovEmail author
  • E. A. Grushevenko
  • I. A. Podtynnikov
  • D. S. Bakhtin
  • G. N. Bondarenko
Article
  • 11 Downloads

Abstract

A method is proposed for the synthesis of new membrane materials based on polydimethylsiloxane (PDMS) and polybutadiene (PB). It has been shown that all components of the mixture completely enter into the hydrosilylation reaction and form a chemically crosslinked composite material. It has been found that in the region of low PB concentrations, the composite has a less crosslinked and dense structure. The gas transport properties of the synthesized materials have been experimentally investigated. The proposed materials have higher selectivity for organic components than the industrially used membrane polymer PDMS, which is determined by their high sorption selectivity. A membrane containing 17 wt % PB has enhanced fluxes of organic components and an increased separation factor for all alcohols (ethanol, n-propanol, and n-butanol) examined relative to those of the PDMS membrane in the pervaporative separation of water–alcohol solutions. At the same time, the ethanol–water permselectivity of such a membrane is greater than 1, a value that has been first achieved by modifying PDMS with polymers. Materials of this type have a great potential for the creation of membranes with high permeability and selectivity in the recovery of volatile organic compounds from aqueous media.

Keywords:

pervaporation membranes gas separation polydimethylsiloxane polybutadiene organoselective membranes 

Notes

ACKNOWLEDGMENTS

This study was supported by the Russian Science Foundation, project no. 17-79-20296. I.L. Borisov, E.A. Grushevenko, I.A. Podtynnikov, and D.S. Bakhtin thank the Center for Collective Use at the Topchiev Institute for the equipment provided.

REFERENCES

  1. 1.
    TR TS (Technical Regulations of the Customs Union) 013-2011: The Requirements for Automobile and Aviation Gasolines, Diesel and Marine Fuels, Jet Fuel, and Fuel Oil [in Russian].Google Scholar
  2. 2.
    Exposure Standard 2.1.5.1315-03: Maximum Permissible Concentrations (MPC) of Chemicals in Water of Water Bodies of Drinking and Cultural-Household Use [in Russian].Google Scholar
  3. 3.
    R. A. Deeb, K.-H. Chu, T. Shih, et al., Environ. Energy Sci. 20, 433 (2003).Google Scholar
  4. 4.
    Degrémont, Mémento technique de l’eau, 2 vols., 10th Ed. (Lavoisier, Paris, 2005), Vol. 1.Google Scholar
  5. 5.
    H. Kölbel and M. Ralek, Catal. Rev. 21, 225 (1980).CrossRefGoogle Scholar
  6. 6.
    L. M. J. Vane, Chem. Technol. Biotechnol. 80, 603 (2005).CrossRefGoogle Scholar
  7. 7.
    Y. Li, H. Chen, J. Liu, et al., Sep. Purif. Technol. 57), 140 (2007).Google Scholar
  8. 8.
    J. Kujawski, A. Rozicka, M. Bryjak, and W. Kujawski, Sep. Purif. Technol. 132, 422 (2014).CrossRefGoogle Scholar
  9. 9.
    A. A. Keller, B. Bierwagen, S. Sirivithayapakorn, and M. Kram, Hazard. Ind. Wastes 31, 199 (1991).Google Scholar
  10. 10.
    M. Peng, L. M. Vane, and S. X. Liu, J. Hazard. Mater. 98, 69 (2003).CrossRefGoogle Scholar
  11. 11.
    R. M. Barrer and E. K. Rideal, Trans. Faraday Soc. 35, 628 (1939).CrossRefGoogle Scholar
  12. 12.
    A. M. Shishatskii, Yu. P. Yampol’skii, and K.-V. Peinemann, J. Membr. Sci. 112, 275 (1996).CrossRefGoogle Scholar
  13. 13.
    R. W. Baker, J. G. Wijmans, and Y. Huang, J. Membr. Sci. 348, 346 (2010).CrossRefGoogle Scholar
  14. 14.
    A. Kujawska, K. Knozowska, J. Kujawa, and W. Kujawski, Sep. Purif. Technol. 159, 68 (2016).CrossRefGoogle Scholar
  15. 15.
    J. Gmehling and U. Onken, Chemistry Data Series, vol. 1: Vapor–Liquid Equilibrium Data Collection (DECHEMA, Frankfurt-on-Main, 1977–1978).Google Scholar
  16. 16.
    I. L. Borisov, G. S. Golubev, V. P. Vasilevsky, et al., J. Membr. Sci. 523, 291 (2017).CrossRefGoogle Scholar
  17. 17.
    A. Yushkin, A. Grekhov, S. Matson, et al., React. Funct. Polym. 86, 269 (2015).CrossRefGoogle Scholar
  18. 18.
    Hydrosilylation: A Comprehensive Review on Recent Advances, Ed. by B. Marciniec (Springer, Dordrecht, 2009).Google Scholar
  19. 19.
    Dogadkin, B.A., Dontsov, A.A., and Shershnev, V.A., Elastomer Chemistry (Khimiya, Moscow, 1981).Google Scholar
  20. 20.
    H. Hocheng, C. M. Chen, Y. C. Chou, and C. H. Lin, Microsyst. Technol. 16, 423 (2010).CrossRefGoogle Scholar
  21. 21.
    S. Matteucci, R. D. Raharjo, V. A. Kusuma, et al., Macromolecules 41, 2144 (2008).CrossRefGoogle Scholar
  22. 22.
    I. Pinnau and Z. He, J. Membr. Sci. 244, 227 (2004).CrossRefGoogle Scholar
  23. 23.
    T. C. Merkel, V. I. Bondar, K. Nagai, et al., J. Polym. Sci., Part B: Polym. Phys. 38, 415 (2000).CrossRefGoogle Scholar
  24. 24.
    I. L. Borisov, A. O. Malakhov, V. S. Khotimsky, et al., J. Membr. Sci. 466, 322 (2014).CrossRefGoogle Scholar
  25. 25.
    S. Matteucci, V. A. Kusuma, S. Swinnea, and B. D. Freeman, Polymer 49, 757 (2008).CrossRefGoogle Scholar
  26. 26.
    L. M. Vane, Sep. Sci. Technol. 48, 429 (2013).CrossRefGoogle Scholar
  27. 27.
    S. J. Lue, C. F. Chien, and K. P. O. Mahesh, J. Membr. Sci. 384, 17 (2011).CrossRefGoogle Scholar
  28. 28.
    P. Peng, B. Shi, and Y. Lan, Sep. Sci. Technol. 46, 234 (2010).CrossRefGoogle Scholar
  29. 29.
    M. D. Jia, K. V. Pleinemann, and R. D. Behling, J. Membr. Sci. 73, 119 (1992).CrossRefGoogle Scholar
  30. 30.
    X. Chen, Z. H. Ping, and Y. C. Long, J. Appl. Polym. Sci. 67, 629 (1998).CrossRefGoogle Scholar
  31. 31.
    T. Kashiwagi, K. Okabe, and K. Okita, J. Membr. Sci. 36, 353 (1988).CrossRefGoogle Scholar
  32. 32.
    T. Miyata, S. Obata, and T. Uragami, Macromolecules 32, 3712 (1999).CrossRefGoogle Scholar
  33. 33.
    I. L. Borisov, N. V. Ushkov, V. V. Volkov, and E. Sh. Finkel’shtein, Pet. Chem. 56, 800 (2016).Google Scholar
  34. 34.
    I. F. Vankelecom, D. Depre, S. De Beukelaer, and J. B. Uytterhoeven, J. Phys. Chem. 99, 13193 (1995).CrossRefGoogle Scholar
  35. 35.
    J. Huang and M. M. Meagher, J. Membr. Sci. 192, 231 (2001).CrossRefGoogle Scholar
  36. 36.
    K. I. Okamoto, A. Butsuen, S. Tsuru, et al., Polym. J. 19, 747 (1987).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. L. Borisov
    • 1
    Email author
  • E. A. Grushevenko
    • 1
  • I. A. Podtynnikov
    • 1
  • D. S. Bakhtin
    • 1
  • G. N. Bondarenko
    • 1
  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia

Personalised recommendations