Petroleum Chemistry

, Volume 58, Issue 11, pp 965–974 | Cite as

The Effect of Concentration and pH of NaCl Solution on the Transport Properties of Anion Exchange Membranes with Different Fixed Groups

  • S. V. ZyryanovaEmail author
  • N. D. Pismenskaya
  • V. V. Nikonenko


The effect of pH and concentration of the NaCl solution on the exchange capacity and transport properties of the MA-40 and MA-41 anion-exchange heterogeneous membranes with different nature of fixed groups has been studied: MA-40 has weakly basic groups, and MA-41 has strongly basic groups with a small proportion of weakly basic ones. The exchange capacity, thickness, water content, and electrical conductivity of the membranes equilibrated with NaCl solutions of various concentrations and pH were measured; for the same solutions, the diffusion permeability coefficients were found. The capacity was measured in the pH range from 1.5 to 12; the remaining properties, in the pH range from 3 to 9. Using the values of electrical conductivity and diffusion permeability, the ion transport numbers in the membranes were calculated. It was shown that at the external solution pH 9 the thickness of the membranes and their electric conductivity are minimal, and the transport numbers of co-ions are maximum. This is explained by the fact that in basic solutions weakly basic functional groups are largely deprotonated, and the effective capacity of the membrane is significantly reduced. The maximum effective capacity is achieved at pH \( \leqslant \) 3; in this case, transport numbers of co-ions in the MA-40 membrane are 5-fold, and in the MA-41 membrane, two-fold lower than corresponding values at pH 6 and 9. The changes in the transport properties of the membranes with increasing pH are due to a decrease in the degree of protonation of weakly basic functional groups, these changes are more pronounced for the MA-40 membrane than for MA-41.


electrodialysis pH of solution electrical conductivity ion-exchange membrane diffusion permeability transport numbers 



The authors thank Professor N.V. Shel’deshov for valuable advice and useful discussions. The work was supported by the Russian Science Foundation, project no. 17-19-014-86.


  1. 1.
    N. P. Gnusin, V. I. Zabolotskii, V. V. Nikonenko, and A. I. Meshechkov, Zh. Fiz. Khim. 54, 1518 (1980).Google Scholar
  2. 2.
    N. P. Gnusin, N. P. Berezina, N. A. Kononenko, and O. A. Dyomina, J. Membr. Sci. 243, 301 (2004).CrossRefGoogle Scholar
  3. 3.
    N. P. Berezina, N. A. Kononenko, O. A. Dyomina, and N. P. Gnusin, Adv. Colloid Interface Sci. 139, 3 (2008).CrossRefPubMedGoogle Scholar
  4. 4.
    N. D. Pismenskaya, E. I. Belova, V. V. Nikonenko, and C. Larchet, Russ. J. Electrochem. 44, 1285 (2008).CrossRefGoogle Scholar
  5. 5.
    V. K. Shahi, A. P. Murugesh, B. S. Makwana, et al., Indian J. Chem. A 39, 1264 (2000).Google Scholar
  6. 6.
    X. Tongwen and Y. Weihua, J. Membr. Sci. 190, 159 (2001).CrossRefGoogle Scholar
  7. 7.
    L. X. Tuan, J. Colloid Interface Sci. 325, 215 (2008).CrossRefGoogle Scholar
  8. 8.
    Y. Sedkaoui, A. Szymczyk, H. Lounici, and O. Arous, J. Membr. Sci. 507, 34 (2016).CrossRefGoogle Scholar
  9. 9.
    V. I. Zabolotsky and V. V. Nikonenko, J. Membr. Sci. 79, 181 (1993).CrossRefGoogle Scholar
  10. 10.
    F. Helfferich, Ionenaustauscher Bd. 1: Grundlagen Struktur-Herstellung-Theorie (Chemie, Weinheim, 1959).Google Scholar
  11. 11.
    N. D. Pis’menskaya, Russ. J. Electrochem. 32, 252 (1996).Google Scholar
  12. 12.
    G. Yu. Lopatkova, E. I. Volodina, N. D. Pis’menskaya, et al., Russ. J. Electrochem. 42, 847 (2006).CrossRefGoogle Scholar
  13. 13.
    V. I. Zabolotskii, S. V. Utin, N. V. Shel’deshov, K. A. Lebedev, P. A. Vasilenko, Russ. J. Electrochem. 47, 321 (2011).CrossRefGoogle Scholar
  14. 14.
    N. Kononenko, V. Nikonenko, D. Grande, et al., Adv. Colloid Interface Sci. 246, 196 (2017).CrossRefPubMedGoogle Scholar
  15. 15.
    T. K. Brutskus, E. V. Zambrovskaya, I. V. Sambrovskii, and A. B. Pashkov, Ion-Exchange Resins: A Catalogue (NIITEKhim, Cherkassy, 1975) [in Russian].Google Scholar
  16. 16.
    J. Balster, I. Punt, D. F. Stamatialis, et al., J. Membr. Sci. 303, 213 (2007).CrossRefGoogle Scholar
  17. 17.
    V. Zabolotskii, N. Sheldeshov, and S. Melnikov, Desalination 342, 183 (2014).CrossRefGoogle Scholar
  18. 18.
    S. A. Loza, V. I. Zabolotsky, N. V. Loza, and M. A. Fomenko, Pet. Chem. 56, 1027 (2016).CrossRefGoogle Scholar
  19. 19.
    S. Mikhaylin, V. Nikonenko, G. Pourcelly, and L. Bazinet, Green Chem. 18, 307 (2016).CrossRefGoogle Scholar
  20. 20.
    V. Zabolotsky, S. Utin, A. Bespalov, and V. Strelkov, J. Membr. Sci. 494, 188 (2015).CrossRefGoogle Scholar
  21. 21.
    E. M. Akberova, Candidate’s Dissertation in Chemistry (Voronezh, 2015) [in Russian].Google Scholar
  22. 22.
    O. A. Demina, N. P. Berezina, T. Sata, and A. V. Demin, Russ. J. Electrochem 38, 896 (2002).CrossRefGoogle Scholar
  23. 23.
    V. I. Vasil’eva, N. D. Pismenskaya, E. M. Akberova, and K. A. Nebavskaya, Russ. J. Phys. Chem. 88, 1293 (2014).CrossRefGoogle Scholar
  24. 24.
    V. D. Grebenyuk and A. A. Mazo, Desalination of Water with Ion-Exchange Resins (Khimiya, Moscow, 1980) [in Russian].Google Scholar
  25. 25.
    E. E. Nevakshenova, Candidate’s Dissertation in Chemistry (Krasnodar, 2013) [in Russian].Google Scholar
  26. 26.
    Ion-Exchange Resin Membranes, Granulates, and Powders: A Catalogue (NIITEKhim, Moscow, 1977) [in Russian]..Google Scholar
  27. 27.
    E. M. Akberova and M. D. Malykhin, Sorb. Khromatogr. Protsess. 14, 232 (2014).Google Scholar
  28. 28.
    G. Merle, M. Wessling, and K. Nijmeijer, J. Membr. Sci. 377, 1 (2011).CrossRefGoogle Scholar
  29. 29.
    N. N. Belaid, L. Dammak, B. Ngom, et al., Eur. Polym. J. 34, 564 (1998).Google Scholar
  30. 30.
    L. V. Karpenko, O. A. Demina, G. A. Dvorkina, et al., Russ. J. Electrochem. 37, 287 (2001).CrossRefGoogle Scholar
  31. 31.
    V. V. Nikonenko, RU Patent No. 2010121195 (2010).Google Scholar
  32. 32.
    N. P. Gnusin, N. P. Berezina, A. A. Shudrenko, and O. P. Ivina, Zh. Fiz. Khim. 68, 565 (1994).Google Scholar
  33. 33.
    V. I. Zabolotskii and V. V. Nikonenko, Ion Transport in Membranes (Nauka, Moscow, 1996) [in Russian].Google Scholar
  34. 34.
    C. Larchet, L. Dammak, B. Auclair, et al., New J. Chem. 28, 1260 (2004).CrossRefGoogle Scholar
  35. 35.
    S. A. Lawrence, Amines: Synthesis, Properties and Applications (Cambridge University Press, Cambridge, 2004).Google Scholar
  36. 36.
    L. Franck-Lacaze, P. Sistat, P. Huguet, and F. Lapicque, J. Membr. Sci. 340, 257 (2009).CrossRefGoogle Scholar
  37. 37.
    V. Sarapulova, E. Nevakshenova, N. Pismenskaya, et al., J. Membr. Sci. 479, 28 (2015).CrossRefGoogle Scholar
  38. 38.
    B. B. Damaskin, O. A. Petrii, and G. A. Tsirlina, Textbook of Electrochemistry (Khimiya, Moscow, 2001) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. V. Zyryanova
    • 1
    Email author
  • N. D. Pismenskaya
    • 1
  • V. V. Nikonenko
    • 1
  1. 1.Kuban State UniversityKrasnodarRussia

Personalised recommendations