Petroleum Chemistry

, Volume 58, Issue 11, pp 949–957 | Cite as

Composite Membranes with a Polyvinyltrimethylsilane Skin Layer for Separation of Water–Alcohol Mixtures

  • V. V. TeplyakovEmail author
  • M. G. Shalygin
  • A. A. Kozlova
  • A. I. Netrusov


The paper presents the characteristics of a laboratory-made water-selective composite membrane with a selective layer of hydrophobic polyvinyltrimethylsilane (PVTMS) for use in the processes of vapor-phase membrane recovery of alcohols from dilute aqueous alcohol mixtures of biogenic origin. The support is a polyacrylonitrile ultrafiltration membrane, and the PVTMS skin layer of the resulting composite membrane has a thickness of 3 to 4 microns. The vapor transport and separation characteristics of the membrane for water–ethanol and water–butanol mixtures in the temperature range of 60–80°C have been studied. It has been shown that the membrane selectivity varies in the range of 23–39 for the water/ethanol pair or 100–140 for the water/butanol pair. A specific feature of the hydrophobic water-selective membrane as applied to the vapor-phase process is the stability of its characteristics due to the absence of swelling, in contrast to hydrophilic water-selective membranes whose characteristics substantially depend on the activity of water vapor. The process of vapor-phase membrane recovery of ethanol and butanol from dilute aqueous alcohol mixtures of biogenic origin with their initial concentrations of 10 and 1 wt %, respectively, has been mathematically modeled on the basis of the experimental data. The calculation results show that the composite membrane obtained makes it possible to concentrate ethanol and butanol to 95 and 98 wt % with degrees of recovery of more than 0.8 and more than 0.9, respectively.


membrane separation of vapors water–alcohol mixtures recovery of alcohols composite membranes 



The authors are grateful to N.V. Sadovskaya, the leading research associate at the Center for Collective Use, Branch of Karpov Institute of Physical Chemistry, for assistance in carrying out scanning electron microscopy of composite membranes.

The development of composite membranes with a selective PVTMS layer, the investigation of their vapor-separating properties, the designing of the unique hybrid device for measuring the vapor permeability of membranes, and the modeling of bioalcohol recovery processes were supported by the Russian Science Foundation, project no. 16-14-00098. The development of the procedure and the laboratory facility for the fabrication of various composite membranes was supported by the Federal Agency of Science Institutions of Russia within the framework of the State task to the Topchiev Institute of Petrochemical Synthesis.


  1. 1.
    I. I. Moiseev and N. A. Plate, Chem. J., No. 6, 45 (2006).Google Scholar
  2. 2.
    S. Varfolomeev, Chem. J., No. 8, 36 (2009).Google Scholar
  3. 3.
    P. Stepanenko, Chem. J., No. 9, 30 (2008).Google Scholar
  4. 4.
    V. V. Volkov, A. G. Fadeev, V. S. Khotimskii, et al., Ross. Khim. Zh, No. 6, 71 (2003).Google Scholar
  5. 5.
    N. Qureshi, et al., Biotechnol. Prog. 22, 673 (2006).CrossRefPubMedGoogle Scholar
  6. 6.
    A. Oudshoorn, A. M. Luuk, L. Wielen, and A. Straathof, Ind. Eng. Chem. Res. 48, 7325 (2009).CrossRefGoogle Scholar
  7. 7.
    N. Qureshi and H. P. Blashek, Renew. Energy 22, 557 (2001).CrossRefGoogle Scholar
  8. 8.
    L. M. Vane, Chem. Technol. Biotechnol. 80, 603 (2005).CrossRefGoogle Scholar
  9. 9.
    K. D. Jitesh, V. G. Pangarkar, and K. Niranjan, Bioseparation 9, 145 (2000).CrossRefPubMedGoogle Scholar
  10. 10.
    A. V. Yakovlev, M. G. Shalygin, S. M. Matson, et al., J. Membr. Sci. 434, 99 (2013).CrossRefGoogle Scholar
  11. 11.
    M. G. Shalygin, A. A. Kozlova, A. I. Netrusov, and V. V. Teplyakov, Pet. Chem. 56, 984 (2016).CrossRefGoogle Scholar
  12. 12.
    A. G. Morachevskii, Thermodynamics of Liquid–Vapor Equilibria (Khimiya, Leningrad, 1989) [in Russian].Google Scholar
  13. 13.
    E. P. Ageev and V. V. Lunin, Laboratory Works on Physical Chemistry: Thermodynamics, (Akademiya, Moscow, 2010), p. 224 [in Russian].Google Scholar
  14. 14.
    J. Gmehling and U. Onken, Vapor–Liquid Equilibrium Data Collection, vol. 1 of Dechema Chemistry Data Series (Dechema, Frankfurt-on-Main, 1977), part 1, p. 1.Google Scholar
  15. 15.
    V. V. Teplyakov and M. G. Shalygin, Pervaporation, Vapour Permeation and Membrane Distillation: Principles and Applications, Ed. by A. Basile, A. Figioli, and M. Khayet (Elsevier, Amsterdam, 2015), p. 177.Google Scholar
  16. 16.
    A. A. Kozlova, M. G. Shalygin, and V. V. Teplyakov, Int. J. Membr. Sci. Technol. 3, 56 (2016).CrossRefGoogle Scholar
  17. 17.
    A. G. Fadeev, et al., J. Membr. Sci. 186, 205 (2001).CrossRefGoogle Scholar
  18. 18. Accessed March 5, 2018.Google Scholar
  19. 19.
    I. B. Elkina, A. B. Gilman, V. V. Ugrozov, and V. V. Volkov, Ind. Eng. Chem. Res. 52, 8856 (2013).CrossRefGoogle Scholar
  20. 20.
    Yu. P. Yampolskii and V. V. Volkov, J. Membr. Sci. 64, 191 (1991).CrossRefGoogle Scholar
  21. 21. Accessed March 19, 2018.Google Scholar
  22. 22.
    A. Yushkin, A. Grekhov, S. Matson, et al., React. Funct. Polym. 86, 269 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. V. Teplyakov
    • 1
    • 2
    Email author
  • M. G. Shalygin
    • 1
    • 2
  • A. A. Kozlova
    • 1
    • 2
  • A. I. Netrusov
    • 1
    • 2
  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia
  2. 2.Faculty of Biology, Moscow State UniversityMoscowRussia

Personalised recommendations