Petroleum Chemistry

, Volume 58, Issue 11, pp 934–940 | Cite as

Membrane Materials with Semi-Interpenetrating Networks Based on Poly(4-methyl-2-pentyne) and Polyethyleneimine

  • S. M. MatsonEmail author
  • E. G. Litvinova
  • V. S. Khotimskiy


Disubstituted polyacetylene poly(4-methyl-2-pentyne) (PMP) exhibits one of the highest levels of gas/vapor permeability and selectivity of C3+ recovery from mixtures with permanent gases among known polymers. In this study, semi-interpenetrating networks based on compatible mixtures of PMP and thermally crosslinked polyethyleneimine (PEI) have been obtained to enhance the resistance of PMP to organic solvents. Investigation of the phase equilibrium of PMP and PEI mixtures by optical interferometry has revealed that PMP dissolves up to 30 vol % PEI at room temperature. The fact of thermal crosslinking of PEI is confirmed by IR data. The influence of the proportion of crosslinked PEI on the gas permeability, solubility, and swelling in organic solvents of the films prepared from PMP mixtures with PEI has been examined. Having the PEI content higher than 20 vol %, the films are resistant to organic solvents for at least 14 days. Moreover, with an increase in the proportion of PEI, the degree of swelling of the films is substantially reduced. The increase in stability can be explained by the retention of PMP macromolecules in the crosslinked PEI matrix, which probably reduces the swelling of the films and impedes the extraction of linear PMP macromolecules from the polymer network. The ideal O2/N2, CO2/N2, and CO2/CH4 selectivities increase with a growth in the PEI proportion.


poly(4-methyl-2-pentyne) polyethyleneimine phase equilibrium of polymer mixtures semi-interpenetrating networks membrane separation materials 



The authors are grateful to G.N. Bondarenko for assistance in measuring IR spectra.

The work was supported by the Federal Agency of Science Institutions of Russia within the framework of the State task to the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.


  1. 1.
    K. Nagai, T. Masuda, T. Nakagawa, et al., Prog. Polym. Sci. 26, 721 (2001).CrossRefGoogle Scholar
  2. 2.
    R. Srinivasan, S. R. Auvil, and P. M. Burban, J. Membr. Sci. 86, 67 (1994).CrossRefGoogle Scholar
  3. 3.
    T. C. Merckel, R. P. Gupta, B. S. Turk, and B. D. Freeman, J. Membr. Sci. 191, 85 (2001).CrossRefGoogle Scholar
  4. 4.
    A. Morisato and I. Pinnau, J. Membr. Sci. 121, 243 (1996).CrossRefGoogle Scholar
  5. 5.
    T. C. Merkel, B. D. Freeman, R. J. Spontak, et al., Chem. Mater. 15, 109 (2003).CrossRefGoogle Scholar
  6. 6.
    T. C. Merkel, B. D. Freeman, R. J. Spontak, et al., Science 296 (5567), 519 (2002).CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    W. Yave, S. Shishatskiy, V. Abetz, et al., Macromol. Chem. Phys. 208, 2412 (2007).CrossRefGoogle Scholar
  8. 8.
    V. S. Khotimsky, S. M. Matson, E. G. Litvinova, et al., Polym. Sci., Ser. A. 45, 740 (2003).Google Scholar
  9. 9.
    A. Morisato and I. Pinnau, J. Membr. Sci. 121, 243 (1996).CrossRefGoogle Scholar
  10. 10.
    R. W. Baker, Ind. Eng. Chem. Res. 41, 1393 (2002).CrossRefGoogle Scholar
  11. 11.
    S. L. Doo, S. J. Dae, H. K. Tae, and C. K. Sung, J. Membr. Sci. 60, 233 (1991).CrossRefGoogle Scholar
  12. 12.
    D. S. Lee, W. K. Kang, J. H. An, and S. C. Kim, J. Membr. Sci. 75, 15 (1992).CrossRefGoogle Scholar
  13. 13.
    B.-Y. Lim and S.-C. Kim, J. Membr. Sci. 209, 293 (2002).CrossRefGoogle Scholar
  14. 14.
    J. Aleman, A. V. Chadwick, J. He, et al., Pure Appl. Chem. 79, 1801 (2007).CrossRefGoogle Scholar
  15. 15.
    L. Chikh, V. Delhorbe, and O. Fichet, J. Membr. Sci. 368, 1 (2011).CrossRefGoogle Scholar
  16. 16.
    S. Saimani and A. Kumar, J. Appl. Polym. Sci. 110, 3606 (2008).CrossRefGoogle Scholar
  17. 17.
    J. R. Nair, M. Destro, F. Bella, and G. B. Appetecchi, J. Power Sources 306, 258 (2016).CrossRefGoogle Scholar
  18. 18.
    J. Kurdi and A. Kumar, J. Membr. Sci. 280, 234 (2006).CrossRefGoogle Scholar
  19. 19.
    S. Saimani, M. M. Dal-Cin, A. Kumar, and D. M. Kingston, J. Membr. Sci. 362, 353 (2010).CrossRefGoogle Scholar
  20. 20.
    C. Zhang, W. Zhang, H. Gao, et al., J. Membr. Sci. 528, 72 (2017).CrossRefGoogle Scholar
  21. 21.
    J. Kurdi and A. Kumar, Sep. Purif. Technol. 53, 301 (2007).CrossRefGoogle Scholar
  22. 22.
    J. Kurdi and A. Kumar, J. Membr. Sci. 280, 234 (2006).CrossRefGoogle Scholar
  23. 23.
    M.-S. Kang, J. H. Kim, J. Won, et al., J. Membr. Sci. 247, 127 (2005).CrossRefGoogle Scholar
  24. 24.
    X. Wu, G. He, S. Gu, et al., J. Membr. Sci. 295, 80 (2007).CrossRefGoogle Scholar
  25. 25.
    J. Reale, Jr., US Patent No. 5032278 (1991).Google Scholar
  26. 26.
    A. A. Surovtsev, N. V. Petrushanskaya, O. P. Karpov, et al., RU Patent No. 2228323 (2004).Google Scholar
  27. 27.
    A. Ya. Malkin and A. E. Chalykh, Diffusion and Viscosity of Polymers: Measurement Techniques (Khimiya, Moscow, 1979) [in Russian].Google Scholar
  28. 28.
    V. Makarova and V. Kulichikhin, Interferometry: Research and Applications in Science and Technology, Ed. by I. Padron (InTech, Rijeka, 2012), ch. 20.Google Scholar
  29. 29.
    M. M. Feldstein, T. I. Kiseleva, G. N. Bondarenko, et al., J. Appl. Polym. Sci. 112, 1142 (2009).CrossRefGoogle Scholar
  30. 30.
    B. V. Ioffe, Refractometric Techniques in Chemistry (Khimiya, Leningrad, 1974) [in Russian].Google Scholar
  31. 31.
    Q. Lu, J. Yang, W. Lu, J. Wang, Y. Nuli, Electrochim. Acta 152, 489 (2015).CrossRefGoogle Scholar
  32. 32.
    F. Tran-Van, L. Beouch, F. Vidal, et al., Electrochim. Acta 53, 4336 (2008).CrossRefGoogle Scholar
  33. 33.
    E. Cznotka, S. Jeschke, P. Vettikuzha, and H.-D. Wiemhöfer, Solid States Ionics 274, 55 (2015).CrossRefGoogle Scholar
  34. 34.
    D. He, D. W. Kim, J. S. Park, et al., J. Power Sources 244, 170 (2013).CrossRefGoogle Scholar
  35. 35.
    S. Kalapala and A. J. Easteal, J. Power Sources 147, 256 (2005).CrossRefGoogle Scholar
  36. 36.
    H.-J. Ha, E.-H. Kil, Y. H. Kwon, et al., Energy Environ. Sci. 5, 6491 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. M. Matson
    • 1
    Email author
  • E. G. Litvinova
    • 1
  • V. S. Khotimskiy
    • 1
  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia

Personalised recommendations