Petroleum Chemistry

, Volume 58, Issue 11, pp 911–922 | Cite as

Methanol Steam Reforming in Membrane Reactors

  • A. A. LytkinaEmail author
  • N. V. Orekhova
  • A. B. Yaroslavtsev


A brief review of recent scientific publications concerning the steam reforming of methanol in membrane reactors for the production of pure hydrogen is presented. The use of membrane reactors makes it possible to lower the temperature of this process by 100°C, increase the selectivity of the process, and practically eliminate the effect of catalysts’ carbonization. A substantial advantage of the use of membrane reactors is the possibility for removing a stream of high-purity hydrogen from the permeate zone. First of all, this applies to CO impurities, whose presence is critical for the use of hydrogen in low-temperature fuel cells based on proton-conducting membranes. The use of metallic membranes based on Pd makes it possible to directly use the hydrogen produced in the fuel cells.


hydrogen steam reforming of methanol metallic membranes palladium membranes membrane reactor catalysis hydrogen energy 



This work was supported by the Federal Agency for Scientific Organizations of Russia within the framework of the state task to the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.


  1. 1. Scholar
  2. 2.
    I. A. Stenina, E. Yu. Safronova, A. B. Yaroslavtsev, et al., Therm. Eng. 63, 385 (2016).CrossRefGoogle Scholar
  3. 3.
    N. L. Basov, M. M. Ermilova, N. V. Orekhova, et al., Mendeleev Commun. 23 (2), 69 (2013).CrossRefGoogle Scholar
  4. 4.
    A. Heinzel, B. Vogel, and P. Hiugner, J. Power Sources 105, 202 (2002).CrossRefGoogle Scholar
  5. 5.
    Y. Shirasaki, T. Tsuneki, Y. Ota, et al., Int. J. Hydrogen Energy 34, 4482 (2009).CrossRefGoogle Scholar
  6. 6.
    A. G. Dedov, A. S. Loktev, I. I. Moiseev, et al., Chem. Technol. 5, 208 (2008).Google Scholar
  7. 7.
    V. L. Kozhevnikov, I. A. Leonidov, and M. V. Patrakeev, Russ. Chem. Rev. 82, 772 (2013).CrossRefGoogle Scholar
  8. 8.
    A. A. Markov, O. A. Savinskaya, M. V. Patrakeev, et al., J. Solid State Chem. 182, 799 (2009).CrossRefGoogle Scholar
  9. 9.
    Z. Gong and L. Hong, J. Membr. Sci. 380, 81 (2011).Google Scholar
  10. 10.
    S. Sengodan, R. Lan, J. Humphreys, et al. Tao, Renew. Sust. Energy Rev. 82, 761 (2018).CrossRefGoogle Scholar
  11. 11.
    Y. C. Sharma, A. Kumar, R. Prasad, and S. N. Upadhyay, Renew. Sust. Energy Rev. 74, 89 (2017).CrossRefGoogle Scholar
  12. 12.
    S. Chitsazana, S. Sepehria, G. Garbarinoa, et al., Appl. Catal., B 187, 386 (2016).CrossRefGoogle Scholar
  13. 13.
    G. A. Olah, A. Goeppert, and G. K. Surya Prakash, Beyond Oil and Gas: The Methanol Economy, 2nd Ed. (Wiley–VCH, Weinheim, 2009).CrossRefGoogle Scholar
  14. 14.
    S. Brynolf, E. Fridell, and K. Andersson, J. Cleaner Prod. 74, 86 (2014).CrossRefGoogle Scholar
  15. 15.
    S. Sa, H. Silva, L. Brandao, et al., Appl. Catal., B 99, 43 (2010).CrossRefGoogle Scholar
  16. 16.
    T. Hou, S. Zhang, Y. Chen, et al., Renew. Sust. Energy Rev. 44, 132 (2015).CrossRefGoogle Scholar
  17. 17.
    C. Jeppesen, P. Polverino, S. J. Andreasen, et al., Int. J. Hydrogen Energy 42, 21901 (2017).CrossRefGoogle Scholar
  18. 18.
    T. Sutharssan, D. Montalvao, Y. K. Chen, et al., Renew. Sust. Energy Rev. 75, 440 (2017).CrossRefGoogle Scholar
  19. 19.
    T. M. Nenoff, R. J. Spontak, and C. M. Aberg, MRS Bull. 31, 735 (2006).CrossRefGoogle Scholar
  20. 20.
    N. A. Al-Mufachi, N. V. Rees, and R. Steinberger-Wilkens, Renew. Sust. Energy Rev. 47, 540 (2015).CrossRefGoogle Scholar
  21. 21.
    S. Adhikari and S. Fernand, Ind. Eng. Chem. Res. 45, 875 (2006).CrossRefGoogle Scholar
  22. 22.
    D. P. Smith, Hydrogen in Metals (University of Chicago Press, Chicago, 1948).Google Scholar
  23. 23.
    A. B. Yaroslavtsev, Membranes and Membranes Technologies (Nauchnyi Mir, Moscow, 2013) [in Russian].Google Scholar
  24. 24.
    T. M. Adams and J. Mickalonis, Mater. Lett. 61, 817 (2007).CrossRefGoogle Scholar
  25. 25.
    E. M. Savitskii, V. P. Polyakova, N. B. Gorina, and N. R. Roshan, Materials Science of Platinum-Group Metals (Metallurgiya, Moscow, 1975) [in Russian].Google Scholar
  26. 26.
    A. P. Mishchenko, in Metals and Alloys as Membrane Catalysts (Nauka, Moscow, 1981), p. 56 [in Russian].Google Scholar
  27. 27.
    Noble Metals Handbook, Ed. by E. M. Savitskii (Metallurgiya, Moscow, 1984) [in Russian].Google Scholar
  28. 28.
    F. A. Lewis, The Palladium Hydrogen System (Academic, London, 1967).Google Scholar
  29. 29.
    R. Sharma, A. Kumar, and R. K. Upadhyay, Sep. Purif. Technol. 183, 194 (2017).CrossRefGoogle Scholar
  30. 30.
    F. Piskin and T. Ozturk, J. Membr. Sci. 524, 631 (2017).CrossRefGoogle Scholar
  31. 31.
    P. Subhasis, A. J. Ram, N. S. Anand, et al., J. Membr. Sci. 522, 151 (2017).CrossRefGoogle Scholar
  32. 32.
    E. Fernandez, J. A. Medrano, J. Melendez, et al., Chem. Eng. J. 305, 182 (2016).CrossRefGoogle Scholar
  33. 33.
    N. M. Baloyi, B. C. North, H. W. Langmi, et al., South African J. Chem. Eng. 22, 44 (2016).Google Scholar
  34. 34.
    L. P. Didenko, V. I. Savchenko, and L. A. Bikov, Int. J. Hydrogen Energy 41, 307 (2016).CrossRefGoogle Scholar
  35. 35.
    A. W. El Hawa Hani, S. Paglieri, M. C. Craig, et al., Sep. Purif. Technol. 147, 388 (2015).CrossRefGoogle Scholar
  36. 36.
    S. M. Lee, N. Xu, S. S. Kim, et al., J. Membr. Sci. 541, 1 (2017).CrossRefGoogle Scholar
  37. 37.
    D. J. Edlund and W. A. Pledger, J. Membr. Sci. 77, 255 (1993).CrossRefGoogle Scholar
  38. 38.
    A. Li, W. Liang, and R. Hughes, J. Membr. Sci. 165, 135 (2000).CrossRefGoogle Scholar
  39. 39.
    H. Amandusson, L. G. Ekedahl, and H. Dannetun, Appl. Surf. Sci. 153, 259 (2000).CrossRefGoogle Scholar
  40. 40.
    B. A. McCool and Y. S. Lin, J. Mater. Sci. 36, 3221 (2001).CrossRefGoogle Scholar
  41. 41.
    R. Mallada and M. Menéndez, Inorganic Membranes: Synthesis, Characterization and Applications, Technology & Engineering (Elsevier, Amsterdam, 2008).Google Scholar
  42. 42.
    S. Uemiya, Sep. Purif. Technol. 28, 51 (1999).CrossRefGoogle Scholar
  43. 43.
    A. Plazzola, D. A. PachekoTanaka, M. van SintAllen, and F. Gallucci, Molecules 22, 1 (2017).Google Scholar
  44. 44.
    S.-K. Ryi, H-S. Ahn, J.-S. Park, and D-W. Kim, Int. J. Hydrogen Energy 39, 4698 (2014).CrossRefGoogle Scholar
  45. 45.
    V. M. Ievlev, A. A. Maksimenko, E. K. Belonogov, et al., Inorg. Mater. 6, 311 (2015).CrossRefGoogle Scholar
  46. 46.
    V. M. Ievlev, K. A. Solntsev, A. I. Sitnikov, et al., Inorg. Mater. 7, 586 (2016).CrossRefGoogle Scholar
  47. 47.
    V. M. Ievlev, K. A. Solntsev, A. I. Dontsov, et al., Tech. Phys. 61, 467 (2016).CrossRefGoogle Scholar
  48. 48.
    C. Mateos-Pedrero, H. Silva, D. A. P. Tanaka, et al., Appl. Catal., B 174, 67 (2015).CrossRefGoogle Scholar
  49. 49.
    V. Palma, C. Ruocco, F. Castaldo, et al., Int. J. Hydrogen Energy 40, 12650 (2015).CrossRefGoogle Scholar
  50. 50.
    V. Hessel, S. Hardt, and H. Löwe, Chemical Micro Processing: Engineering, Fundamentals, Modelling and Reactions (Wiley–VCH, Weinheim, 2004).CrossRefGoogle Scholar
  51. 51.
    X. Yao, Y. Zhang, L. Du, et al., Renew. Sust. Energy Rev. 47, 519 (2015).CrossRefGoogle Scholar
  52. 52.
    H. Tengfei, Z. Shaoyin, X. Tongkuan, and C. Weijie, Chem. Eng. J. 255, 149 (2014).CrossRefGoogle Scholar
  53. 53.
    A. Tanimu, S. Jaenicke, and Kh. Alhooshani, Chem. Eng. J. 327, 792 (2017).CrossRefGoogle Scholar
  54. 54.
    P. L. Suryawanshi, S. P. Gumfekar, B. A. Bhanvase, et al., Chem. Eng. Sci. (2018). doi org/ doi 10.1016/j.ces.2018.0.026Google Scholar
  55. 55.
    O. Sanz, I. Velasco, I. Perez-Miqueo, et al., Int. J. Hydrogen Energy 41, 5250 (2016).CrossRefGoogle Scholar
  56. 56.
    R. Dai, Z. Zheng, C. Sun, et al., Fuel 214, 88 (2018).CrossRefGoogle Scholar
  57. 57.
    H. An, A. Angli, B. Agus, et al., Chem. Eng. Sci. 75, 85 (2012).CrossRefGoogle Scholar
  58. 58.
    J. Jang, C. Cheng, Y. Huang, et al., Int. J. Hydrogen Energy 37, 16974 (2012).CrossRefGoogle Scholar
  59. 59.
    A. Pattekar and M. A. Kothare, J. Microelectromech. Syst. 13, 7 (2004).CrossRefGoogle Scholar
  60. 60.
    J. Telotte, J. Kern, and S. Palanki, Int. J. Chem. React. Eng. 6, A64 (2008).Google Scholar
  61. 61.
    A. Karim, J. Bravo, and A. Datye, Appl. Catal., A 282, 101 (2005).Google Scholar
  62. 62.
    S. Perng, R. Horng, and H. Ku, Appl. Energy 103, 317 (2013).CrossRefGoogle Scholar
  63. 63.
    J. Suh, M. Lee, R. Greif, and C. P. Grigoropoulos, Int. J. Hydrogen Energy 34, 314 (2009).CrossRefGoogle Scholar
  64. 64.
    T. Terazaki, M. Nomura, K. Takeyama, et al., J. Power Sources 145, 691 (2005).CrossRefGoogle Scholar
  65. 65.
    M. Lee, R. Greif, P. Costas, et al., J. Power Sources 166, 194 (2007).CrossRefGoogle Scholar
  66. 66.
    A. Karim, J. Bravo, D. Gorm, et al., Catal. Today 110, 86 (2005).CrossRefGoogle Scholar
  67. 67.
    V. M. Gryaznov, Dokl. Akad. Nauk SSSR 189, 794 (1969).Google Scholar
  68. 68.
    R. Soria, Catal. Today 25, 285 (1995).CrossRefGoogle Scholar
  69. 69.
    V. Teplyakov and M. Tsodikov, Simulation of Membrane Reactors, Ed. by A. Basile and F. Gallucci (Nova Science, New York, 2009), p. 117.Google Scholar
  70. 70.
    G. Saracco, H. W. J. P. Neomagus, G. F. Versteeg, and W. P. M. van Swaaij, Chem. Eng. Sci. 54, 997 (1999).Google Scholar
  71. 71.
    J. Coronas and J. Santamaria, Catal. Today 51, 377 (1999).CrossRefGoogle Scholar
  72. 72.
    V. M. Gryaznov, Platinum Met. Rev. 30, 68 (1986).Google Scholar
  73. 73.
    V. M. Gryaznov, M. M. Ermilova, N. V. Orekhova, and G. F. Tereschenko, Structured Catalysts and Reactors, Ed. by A. Cybulski and J. A. Moulijn, 2nd Ed. (Taylor&Francis, New York, 2005), p. 579.Google Scholar
  74. 74.
    S. Tosti, A. Basile, L. Bettinale, et al., Int. J. Hydrogen Energy 33, 5098 (2008).CrossRefGoogle Scholar
  75. 75.
    F. Gallucci, E. Fernandez, P. Corengia, and M. van Sint Annaland, Chem. Eng. Sci. 92, 40 (2013).CrossRefGoogle Scholar
  76. 76.
    N. L. Basov, M. M. Ermilova, V. I. Lebedeva, and N. V. Orekhova, A. B. Yaroslavtsev, Membranes and Membranes Technologies, Ed. by A. B. Yaroslavtsev (Nauchnyi Mir, Moscow, 2013), p. 612 [in Russian].Google Scholar
  77. 77.
    J. Caro, Membranes in Chemical/Energy Conversion and Membrane Contactors, vol. 3 of Comprehensive Membrane Science and Engineering, Ed. by E. Drioli and L. Giorno, 2nd Ed. (Elsevier, Amsterdam, 2017), p. 1.Google Scholar
  78. 78.
    G. di Marcoberardino, M. Binotti, G. Manzolini, et al., J. Cleaner Prod. 161, 1442 (2017).CrossRefGoogle Scholar
  79. 79.
    K. Alfadhel and M. V. Kothare, Ind. Eng. Chem. Res. 44, 9794 (2005).CrossRefGoogle Scholar
  80. 80.
    D. Kim, A. Kellogg, E. Livaich, and B. A. Wilhite, J. Membr. Sci. 340, 109 (2009).CrossRefGoogle Scholar
  81. 81.
    X. Y. Tan and K. Li, J. Chem. Technol. Biotechnol. 88, 1771 (2013).CrossRefGoogle Scholar
  82. 82.
    J. D. Holladay and Y. Wang, J. Power Sources 282, 602 (2015).CrossRefGoogle Scholar
  83. 83.
    S. V. Karnik, M. K. Hatalis, and M. V. Kothare, J. Microelectromech. Syst. 12, 93 (2003).CrossRefGoogle Scholar
  84. 84.
    H. Kurokawa, H. Yakabe, I. Yasuda, et al., Int. J. Hydrogen Energy 39, 17201 (2014).CrossRefGoogle Scholar
  85. 85.
    M. A. Rahman, F. R. García-García, and K. Li, J. Membr. Sci. 390, 68 (2012).CrossRefGoogle Scholar
  86. 86.
    F. R. García-García, M. A. Rahman, B. F. K. Kingsbury, and K. A. Li, Catal. Commun. 12, 161 (2010).CrossRefGoogle Scholar
  87. 87.
    D. Palo, R. Dagle, and J. Holladay, Chem. Rev. 107, 3992 (2007).CrossRefPubMedGoogle Scholar
  88. 88.
    A. Iulianelli, P. Ribeirinha, A. Mendes, and A. Basile, Renew. Sust. Energy Rev. 29, 355 (2014).CrossRefGoogle Scholar
  89. 89.
    S. Israni and M. P. Harold, J. Membr. Sci. 369, 375 (2011).CrossRefGoogle Scholar
  90. 90.
    A. Iulianelli, T. Longo, and A. Basile, J. Membr. Sci. 323, 235 (2008).CrossRefGoogle Scholar
  91. 91.
    N. Itoh, Y. Kaneko, and A. Igarashi, Ind. Eng. Chem. Res. 41, 4702 (2002).CrossRefGoogle Scholar
  92. 92.
    Y. M. Lin and M. H. Rei, Catal. Today 67, 77 (2001).CrossRefGoogle Scholar
  93. 93.
    S. Liguori, A. Iulianelli, F. Dalena, et al., Int. J. Hydrogen Energy 39, 18702 (2014).CrossRefGoogle Scholar
  94. 94.
    A. P. Singh, S. Singh, S. Ganguly, and A. V. Patwardhan, J. Nat. Gas Sci. Eng. 18, 286 (2014).CrossRefGoogle Scholar
  95. 95.
    S. Sà, J. M. Sousa, and A. Mendes, Chem. Eng. Sci. 66, 5523 (2011).CrossRefGoogle Scholar
  96. 96.
    D. W. Lee, S. E. Nam, B. Sea, et al., Catal. Today 118, 198 (2006).CrossRefGoogle Scholar
  97. 97.
    K. Briceño, D. Montanè, R. Garcia-Valls, et al., J. Membr. Sci. 415, 288 (2012).CrossRefGoogle Scholar
  98. 98.
    X. Zhang, H. Hu, Y. Zhu, and S. Zhu, Ind. Eng. Chem. Res. 45, 7997 (2006).CrossRefGoogle Scholar
  99. 99.
    D. W. Lee, S. E. Nam, B. Sea, et al. Catal. Today 118, 198 (2006).CrossRefGoogle Scholar
  100. 100.
    D. W. Lee, S. J. Park, C. Y. Yu, et al., J. Membr. Sci. 316, 63 (2008).CrossRefGoogle Scholar
  101. 101.
    A. Basile, S. Tosti, G. Capannelli, et al., Catal. Today 118, 237 (2006).CrossRefGoogle Scholar
  102. 102.
    K. Ghasemzadeh, S. Liguori, P. Morrone, et al., Int. J. Hydrogen Energy 38, 16685 (2013).CrossRefGoogle Scholar
  103. 103.
    K. Ghasemzadeh, S. Liguori, A. Iulianelli, et al., Int. J. Hydrogen Energy 38, 10315 (2013).CrossRefGoogle Scholar
  104. 104.
    A. A. Lytkina, N. V. Orekhova, M. M. Ermilova, et al., Catal. Today 268, 60 (2016).CrossRefGoogle Scholar
  105. 105.
    J. Han, I. S. Kim, and K. S. Choi, J. Power Sources 86, 223 (2000).CrossRefGoogle Scholar
  106. 106.
    J. Han, S. M. Lee, and H. Chang, J. Power Sources 112, 484 (2002).CrossRefGoogle Scholar
  107. 107.
    S. Wieland, T. Melin, and A. Lamm, Chem. Eng. Sci. 57, 1571 (2002).CrossRefGoogle Scholar
  108. 108.
    D. Alique, D. Martinez-Diaz, R. Sanz, and J. A. Calles, Membranes 8, 1 (2018).CrossRefGoogle Scholar
  109. 109.
    M. V. Tsodikov, A. S. Fedotov, D. O. Antonov, et al., Int. J. Hydrogen Energy 41, 2424 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Lytkina
    • 1
    Email author
  • N. V. Orekhova
    • 1
  • A. B. Yaroslavtsev
    • 1
    • 2
  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia
  2. 2.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations