Petroleum Chemistry

, Volume 58, Issue 11, pp 958–964 | Cite as

Effect of Phosphorylation of Polybenzimidazole on Its Conductive Properties

  • A. A. LysovaEmail author
  • Iv. I. Ponomarev
  • Yu. A. Volkova
  • I. I. Ponomarev
  • A. B. Yaroslavtsev


The proton conductivity of phosphorylated polybenzimidazole PhEPBI-O-PhT has been examined. It has been shown that the acid-free membrane has intrinsic conductivity. A comparative study of the conductive properties of PhEPBI-O-PhT and the nonphosphorylated analogue PBI-O-FT has been conducted, and it has been found that the presence of grafted phosphonic groups effectively helps to reduce the concentration of phosphoric acid used for doping with a high conductivity being retained. It has been shown that the introduction of phosphonic groups leads to a decrease in hydrogen gas permeability by 23%. The samples were tested in a membrane electrode assembly.


polybenzimidazole phosphorylated polybenzimidazole proton conductivity gas permeability membrane electrode assembly 



This work was supported by the Russian Science Foundation, project no. 17-73-10447.


  1. 1.
    K. D. Kreuer, S. J. Paddison, E. Spohr, and M. Schuster, Chem. Rev. 104, 4637 (2004).CrossRefPubMedGoogle Scholar
  2. 2.
    M. Hickner, H. Ghassemi, Y. S. Kim, et al., Chem. Rev. 104, 4587 (2004).CrossRefPubMedGoogle Scholar
  3. 3.
    J. Walkowiak-Kulikowska, J. Wolska, and H. Koroniak, Phys. Sci. Rev. 2, 1 (2017).CrossRefGoogle Scholar
  4. 4.
    N. Agmon, Chem. Phys. Lett. 244, 456 (1995).CrossRefGoogle Scholar
  5. 5.
    R. B. Moore and K. A. Mauritz, Chem. Rev. 104, 4535 (2004).CrossRefPubMedGoogle Scholar
  6. 6.
    P. R. Sukumar, W. Wu, D. Markova, et al., Chem. Phys. 208, 2258 (2007).Google Scholar
  7. 7.
    T. Bock, H. Mohwald, and R. Mulhaupt, Macromol. Chem. Phys. 208, 1324 (2007).CrossRefGoogle Scholar
  8. 8.
    C. Wieser, Fuel Cells 4, 245 (2004).CrossRefGoogle Scholar
  9. 9.
    A. B. Yaroslavtsev, Russ. Chem. Rev. 85, 1255 (2016).CrossRefGoogle Scholar
  10. 10.
    Q. Li, J. O. Jensen, R. F. Savinell, and N. J. Bjerrum, Prog. Polym. Sci. 34, 449 (2009).CrossRefGoogle Scholar
  11. 11.
    L. Vilciauskas, M. E. Tuckerman, G. Bester, et al., Nat. Chem 4, 461 (2012).CrossRefPubMedGoogle Scholar
  12. 12.
    J. A. Asensio, E. M. Sanchez, and P. Romero, Chem. Soc. Rev. 39, 3210 (2010).CrossRefPubMedGoogle Scholar
  13. 13.
    J. J. Linares, L. C. Battirola, and J. Lobato, High Temperature Polymer Electrolyte Membrane Fuel Cells: Approaches, Status, and Perspectives, Ed. by Q. Li, D. Aili, H. A. Hjuler, and J. O. Jensen (Springer, Cham, 2016), p. 561.Google Scholar
  14. 14.
    E. Quartarone, S. Angioni, and P. Mustarelli, Materials 10, 687 (2017).CrossRefPubMedCentralGoogle Scholar
  15. 15.
    A. A. Lysova, I. I. Ponomarev, and A. B. Yaroslavtsev, Solid State Ionics 188, 132 (2011).CrossRefGoogle Scholar
  16. 16.
    A. A. Lysova, I. I. Ponomarev, and A. B. Yaroslavtsev, Russ. J. Inorg. Chem. 57, 1 (2012).CrossRefGoogle Scholar
  17. 17.
    A. A. Lysova, I. I. Ponomarev, and A. B. Yaroslavtsev, Pet. Chem. 52, 514 (2012).CrossRefGoogle Scholar
  18. 18.
    A. L. Rusanov, E. A. Solodova, E. G. Bulycheva, et al., Russ. Chem. Rev. 76, 1145 (2007).CrossRefGoogle Scholar
  19. 19.
    D. J. Jones and J. Roziere, J. Membr. Sci. 185, 41 (2001).CrossRefGoogle Scholar
  20. 20.
    J. Roziere and D. J. Jones, Annu. Rev. Mater. Res. 33, 503 (2003).CrossRefGoogle Scholar
  21. 21.
    P. Jannasch, Curr. Opin. Colloid Interface Sci. 8, 96 (2003).CrossRefGoogle Scholar
  22. 22.
    M. A. Hickner, H. Ghassemi, Y. S. Kim, et al., Chem. Rev. 104, 4587 (2004).CrossRefPubMedGoogle Scholar
  23. 23.
    A. L. Rusanov, D. Likhachev, P. V. Kostoglodov, et al., Adv. Polym. Sci. 179, 83 (2005).CrossRefGoogle Scholar
  24. 24.
    M. B. Herath, S. E. Creager, A. Kitaygorodskiy, and D. D. DesMarteau, Chem. Phys. Chem. 11, 2871 (2010).CrossRefPubMedGoogle Scholar
  25. 25.
    M. Schuster, T. Rager, A. Noda, et al., Fuel Cells 5, 355 (2005).CrossRefGoogle Scholar
  26. 26.
    B. Lafitte and P. Jannasch, Advances in Fuel Cells, Ed. by T. S. Zhao, K.-D. Kreuer, and Trung Van Nguen (Elsevier, Amsterdam, 2007), p. 119.Google Scholar
  27. 27.
    J. C. Lassegues, J. Grondin, M. Hernandes, and B. Maree, Solid State Ionics 145, 37 (2001).CrossRefGoogle Scholar
  28. 28.
    A. L. Rusanov, P. V. Kostoglodov, M. J. M. Abadie, et al., Adv. Polym. Sci. 216, 125 (2008).Google Scholar
  29. 29.
    H. Steininger, M. Schuster, K. D. Kreuer, et al., Phys. Chem. Chem. Phys. 9, 1764 (2007).CrossRefPubMedGoogle Scholar
  30. 30.
    V. Atanasov, D. Gudat, B. Ruffmann, and J. Kerres, Eur. Polym. J. 49, 3977 (2013).CrossRefGoogle Scholar
  31. 31.
    H. R. Allcock, M. A. Hofmann, C. M. Ambler, et al., J. Membr. Sci. 201, 47 (2002).CrossRefGoogle Scholar
  32. 32.
    M. J. Sansone, US Patent No. 5599639 (1990).Google Scholar
  33. 33.
    A. I. Fomenkov, I. V. Blagodatskikh, Iv. I. Ponomarev, et al., Polym. Sci., Ser. B 51, 166 (2009).CrossRefGoogle Scholar
  34. 34.
    I. I. Ponomarev, A. E. Chalykh, A. D. Aliev, et al., Dokl. Phys. Chem. 429, 237 (2009).CrossRefGoogle Scholar
  35. 35.
    I. I. Ponomarev, Yu. Yu. Rybkin, Yu. A. Volkova, and D. Yu. Razorenov, RU Patent No. 2332429 (2008).Google Scholar
  36. 36.
    Iv. I. Ponomarev, I. I. Ponomarev, P. V. Petrovskii, et al., Dokl. Chem. 432, 168 (2010).Google Scholar
  37. 37.
    Y. L. Ma, J. S. Wainright, M. H. Litt, and R. F. Savinell, J. Electrochem. Soc. 151, A8 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Lysova
    • 1
    Email author
  • Iv. I. Ponomarev
    • 2
  • Yu. A. Volkova
    • 2
  • I. I. Ponomarev
    • 2
  • A. B. Yaroslavtsev
    • 1
  1. 1.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia
  2. 2.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of SciencesMoscowRussia

Personalised recommendations