Advertisement

Petroleum Chemistry

, Volume 58, Issue 11, pp 975–982 | Cite as

Thermopervaporative Removal of Isopropanol and Butanol from Aqueous Media Using Membranes Based on Hydrophobic Polysiloxanes

  • G. S. Golubev
  • I. L. Borisov
  • V. V. Volkov
Article
  • 2 Downloads

Abstract

For thermopervaporational (TPV) removal of isopropanol and butanol from fermentation broths, known commercial membranes have been experimentally studied, namely, the membranes based on poly(dimethylsiloxane) (PDMS) ((Pervap 4060, Pervatech PDMS, PolyAn and MDK-3) and poly[1-(trimethylsilyl)-1-propyne] (PTMSP). The effect of isopropanol concentration and feed mixture temperature on the TPV properties of the membranes has been studied. It has been found that the most effective membrane for TPV removal of butanol from aqueous media is the PolyAn membrane (PolyAn GmbH, Germany). The membrane has shown the maximum values of permeate flux and pervaporation separation index. The PolyAn membrane has been studied in terms of TPV separation of ternary butanol–isopropanol–water mixture. It has been shown that the existing membrane materials possess low isopropanol-water selectivity (less than 1), therefore, it is necessary to find and develop novel materials promising for the given separation task.

Keywords:

pervaporation thermal pervaporation isopropanol butanol polysiloxanes PTMSP 

Notes

ACKNOWLEDGMENTS

This work was carried out within the State Program of the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

REFERENCES

  1. 1.
    I. I. Moiseev and N. A. Plate, Chem. J. 6, 45 (2006).Google Scholar
  2. 2.
    G. G. Yagafarova and L. A. Nasyrova, Oil Gas Bus. 4, 235 (2006).Google Scholar
  3. 3.
    M. Balat, Energy Convers. Manage. 52, 858 (2011).CrossRefGoogle Scholar
  4. 4.
    C. Xue, J. Zhao, L. Chen, et al., Biotechnol. Adv. 35, 310 (2017).CrossRefGoogle Scholar
  5. 5.
    S. Y. Lee, J. H. Park, S. H. Jang, et al., Biotechnol. Bioeng. 101, 209 (2008).CrossRefGoogle Scholar
  6. 6.
    Y. H. P. Zhang, Biotechnol. Adv. 33, 1467 (2015).CrossRefGoogle Scholar
  7. 7.
    T. C. Ezeji, N. Qureshi, and H. P. Blaschek, Curr. Opin. Biotechnol. 18, 220 (2007).CrossRefGoogle Scholar
  8. 8.
    S. Zhang, X. Huang, C. Qu, et al., Biochem. Eng. J. 117, 112 (2017).CrossRefGoogle Scholar
  9. 9.
    S. H. Youn, K. M. Lee, K. Y. Kim, et al., Biotechnol. Biofuels 9, 230 (2016).CrossRefGoogle Scholar
  10. 10.
    F. Xin, T. Chen, Y. Jiang, et al., Biotechnol. Biofuels 10, 118 (2017).CrossRefGoogle Scholar
  11. 11.
    A. Oudshoorn, L. A. M. van der Wielen, and A. J. J. Straathof, Ind. Eng. Chem. Res. 48, 7325 (2009).CrossRefGoogle Scholar
  12. 12.
    I. L. Borisov and V. V. Volkov, Sep. Purif. Technol. 146, 33 (2015).CrossRefGoogle Scholar
  13. 13.
    I. L. Borisov, V. V. Volkov, V. A. Kirsh, and V. I. Roldugin, Pet. Chem. 51, 542 (2011).CrossRefGoogle Scholar
  14. 14.
    I. L. Borisov, G. S. Golubev, V. P. Vasilevsky, et al., J. Membr. Sci. 523, 291 (2017).CrossRefGoogle Scholar
  15. 15.
    A. C. M. Franken, M. H. V. Mulder, and C. A. Smolders, J. Membr. Sci. 53, 127 (1990).CrossRefGoogle Scholar
  16. 16.
    S. Koter, A. Kujawska, and W. Kujawski, J. Membr. Sci. 480, 129 (2015).CrossRefGoogle Scholar
  17. 17.
    G. A. Dibrov and G. G. Kagramanov, Pervaporation (RKhTU im. D.I. Mendeleeva, Moscow, 2018) [in Russian].Google Scholar
  18. 18.
    A. Pulyalina, G. Polotskaya, M. Goikhman, et al., Sci. Rep. 7, 8415 (2017).CrossRefGoogle Scholar
  19. 19.
    A. Rozicka, J. Niemisto, R. L. Keiski, and W. Kujawski, J. Membr. Sci. 453, 108 (2014).CrossRefGoogle Scholar
  20. 20.
    S. Chovau, S. Gaykawad, A. J. Straathof, and B. van der Bruggen, Bioresource Technol. 102, 1669 (2011).CrossRefGoogle Scholar
  21. 21.
    A. G. Fadeev, M. M. Meagher, S. S. Kelley, and V. V. Volkov, J. Membr. Sci. 173, 133 (2000).CrossRefGoogle Scholar
  22. 22.
    A. G. Fadeev, Y. A. Selinskaya, S. S. Kelley, et al., J. Membr. Sci. 186, 205 (2001).CrossRefGoogle Scholar
  23. 23.
    I. L. Borisov, A. O. Malakhov, V. S. Khotimsky, et al., J. Membr. Sci. 466, 322 (2014).CrossRefGoogle Scholar
  24. 24.
    S. Claes, P. Vandezande, S. Mullens, et al., J. Membr. Sci. 389, 265 (2012).CrossRefGoogle Scholar
  25. 25.
    A. Rozicka, S. Koter, and W. Kujawski, Mon. Environ. Eng. Committ. 118, 69 (2014).Google Scholar
  26. 26.
    R. W. Baker, J. G. Wijmans, and Y. Huang, J. Membr. Sci. 348, 346 (2010).CrossRefGoogle Scholar
  27. 27.
    J. Niemistö, W. Kujawski, and R. L. Keiski, J. Membr. Sci. 434, 55 (2013).CrossRefGoogle Scholar
  28. 28.
    A. V. Yakovlev, M. G. Shalygin, S. M. Matson, et al., J. Membr. Sci. 434, 99 (2013).CrossRefGoogle Scholar
  29. 29.
    N. Qureshi and T. C. Ezeji, Biofuels, Bioprod. Biorefin. 2, 319 (2008).CrossRefGoogle Scholar
  30. 30.
    X. Feng and R. Y. Huang, J. Membr. Sci. 74, 171 (1992).CrossRefGoogle Scholar
  31. 31.
    A. Kujawska, K. Knozowska, J. Kujawa, and W. Kujawski, Sep. Purif. Technol. 159, 68 (2016).CrossRefGoogle Scholar
  32. 32.
    A. Kujawska, J. Kujawski, M. Bryjak, and W. Kujawski, Chem. Eng. Process.: Process Intensif. 94, 62 (2015).CrossRefGoogle Scholar
  33. 33.
    J. Huang and M. M. Meagher, J. Membr. Sci. 192, 231 (2001).CrossRefGoogle Scholar
  34. 34.
    Z. Dong, G. Liu, S. Liu, et al., J. Membr. Sci. 450, 38 (2014).CrossRefGoogle Scholar
  35. 35.
    I. L. Borisov, N. V. Ushakov, V. V. Volkov, and E. Sh. Finkel’shtein, Pet. Chem. 56, 798 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia

Personalised recommendations