Advertisement

Petroleum Chemistry

, Volume 59, Issue 1, pp 78–84 | Cite as

Catalyst Systems Based on a Metal Halide and a Quaternary Ammonium Salt in the 1,2-Epoxycyclopentane Carboxylation Reaction

  • G. Yu. Taranenko
  • G. V. RybinaEmail author
  • S. S. Srednev
  • A. E. Meshechkina
  • A. V. Tarasov
Article
  • 6 Downloads

Abstract

Results of a study of 1,2-epoxycyclopentane carboxylation to cyclopentene carbonate (CPC) in the presence of various catalyst systems have been described. It has been found that the reaction occurs most efficiently in the presence of cobalt (nickel) chloride (bromide) hydrate and a quaternary ammonium salt (TEAB, TBAB). It has been recommended that CPC should be synthesized under a CO2 pressure of no less than 3.5 MPa at a temperature of 140–150°С without any solvent or in the medium of a solvent, such as target CPC, DMF, or N-MP, at a 1,2-epoxycyclopentane weight fraction in the feed mixture of no less than 25%. These conditions provide the formation of CPC with a selectivity of 97–99% and almost complete epoxide conversion within 2–4 h. It has been shown that the developed catalyst system can be recycled.

Keywords:

carboxylation  1,2-epoxycyclopentane catalytic systems 

Notes

REFERENCES

  1. 1.
    T. Sakakura and K. Kohno, Chem. Commun., No. 11, 1312. 2009.Google Scholar
  2. 2.
    M. Aresta, A. Dibenedetto, and E. Quaranta, Reaction Mechanisms in Carbon Dioxide Conversion (Springer, Berlin, 2016).CrossRefGoogle Scholar
  3. 3.
    V. V. Mikheev, Nonisocyanate Polyurethanes (KNITU, Kazan, 2011) [in Russian].Google Scholar
  4. 4.
    M. Carmen, F. Giulia, W. Arjan, and J. Kleij, ACS Catal. 5, 1353 (2015).CrossRefGoogle Scholar
  5. 5.
    I. Taisuke, I. Takehiko, N. Itaru, and O. Masashi, Chem. Pharm. Bull. 50, 83 (2002).CrossRefGoogle Scholar
  6. 6.
    G. Bartolo, M. Raffaella, S. Giuseppe, et al., ChemSusChem 4, 1778 (2011).CrossRefGoogle Scholar
  7. 7.
    J. F. Cooper and M. Lichtenwalter, US Patent No. 2773070 (1956).Google Scholar
  8. 8.
    G. W. Crosby and A. F. Millikan, US Patent No. 2994705 (1961).Google Scholar
  9. 9.
    H. Okamoto and K. Someya, US Patent No. 7199253.Google Scholar
  10. 10.
    D. J. Darensbourg, W. C. Chung, and S. J. Wilson, ACS Catal, 3, 3050 (2013).CrossRefGoogle Scholar
  11. 11.
    Transformation and Utilization of Carbon Dioxide, Ed. by B. M. Bhanage and M. Arai (Springer, Berlin, 2014).Google Scholar
  12. 12.
    M. J. Cannarsa, H.-N. Sun, and H. S. Kesling, Jr., EP Patent No. 0321207 (1989).Google Scholar
  13. 13.
    J. William and J. Kruper, US Patent No. 4663467 (1987).Google Scholar
  14. 14.
    L. V. Mel’nik, A. E. Meshechkina, G. V. Rybina, et al., Pet. Chem. 52, 313 (2012).CrossRefGoogle Scholar
  15. 15.
    G. V. Rybina, L. I. Bobyleva, and S. S. Srednev, Russ. J. Appl. Chem. 76, 842 (2003).CrossRefGoogle Scholar
  16. 16.
    L. Rui, T. Xin, L. Xiaofang, and H. Changwen, Pure Appl. Chem. 84, 621 (2012).Google Scholar
  17. 17.
    D. J. Darensbourg and W. Matthew, Coord. Chem. Rev. 153, 155 (1996).CrossRefGoogle Scholar
  18. 18.
    G. Richard, R. C. Austin, and R. M. Michaelson, US Patent No. 4824969 (1989).Google Scholar
  19. 19.
    G. V. Rybina, L. V. Mel’nik, S. S. Srednev, et al., RU Patent No. 2448945 (2012).Google Scholar
  20. 20.
    E. V. Dehmlow and S. S. Dehmlow, Phase Transfer Catalysis, 2nd Ed. (Chemie, Weinheim, 1983).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • G. Yu. Taranenko
    • 1
  • G. V. Rybina
    • 1
    Email author
  • S. S. Srednev
    • 1
  • A. E. Meshechkina
    • 1
  • A. V. Tarasov
    • 1
  1. 1.Yaroslavl State Technical UniversityYaroslavlRussia

Personalised recommendations