Thermal Degradation of Aviation Synthetic Lubricating Base Oil
- 9 Downloads
Abstract
The thermal degradation, under oxidative pyrolysis conditions, of two synthetic lubricating base oils, poly-α-olefin (PAO) and di-ester (DE), was investigated. The main objective of the study was to characterize their behavior in simulated “areo-engine” conditions, i.e. compared the thermal stability and identified the products of thermal decomposition as a function of exposure temperature. Detailed characterizations of products were performed with Fourier transform infrared spectrometry (FTIR), gas chromatography/ mass spectrometry (GC/MS), viscosity experiments and four-ball tests. The results showed that PAO had the lower thermal stability, being degraded at 200°C different from 300°C for DE. The degradation also effected the tribological properties of lubricating oil. Several by-products were identified during the thermal degradation of two lubricants. The majority of PAO products consisted of alkanes and olefins, while more oxygen-containing organic compounds were detected in DE samples according to the observation of GC/MS analysis. The related reaction mechanisms were discussed according to the experimental results.
Keywords
synthetic lubricating oil poly-α-olefin di-ester thermal stability viscosity degradation tribological propertiesPreview
Unable to display preview. Download preview PDF.
References
- 1.G. J. Bishop, Lubr. Sci. 4, 25 (1987).CrossRefGoogle Scholar
- 2.L. I. Kioupis and E. J. Maginn, J. Phys. Chem. B 103, 10781 (1999).CrossRefGoogle Scholar
- 3.B. K. Sharma and A. J. Stipanovic, Thermochim. Acta 402, 1 (2003).CrossRefGoogle Scholar
- 4.E. Beran, Tribol. Int. 43, 2372 (2010).CrossRefGoogle Scholar
- 5.J. Yao and J. Dong, Thermochim. Acta 262, 157 (1995).CrossRefGoogle Scholar
- 6.D. Du, S. Kim, W. Moon, S. Jin, and W. Kwon, Thermochim. Acta 407, 17 (2003).CrossRefGoogle Scholar
- 7.B. N. Barman, Tribol. Int. 35, 15 (2002).CrossRefGoogle Scholar
- 8.S. M. Powell, I. Snape, J. P. Bowman, B. Thompson, and J. S. Stark, J. Exp. Mar. Biol. Ecol. 322, 53 (2005).CrossRefGoogle Scholar
- 9.G. Mascolo, R. Rausa, G. Bagnuolo, G. Mininni, and L. Tinucci, J. Anal. Appl. Pyrol. 75, 167 (2006).CrossRefGoogle Scholar
- 10.J. Zhu, W. Liu, R. Chu, and X. Meng, Tribol. Int. 40, 10 (2007).CrossRefGoogle Scholar
- 11.S. H. P. Bettini, M. P. P. de Miranda Josefovich, P. A. R. Muñoz, C. Lotti, and L. H. C. Mattoso, Carbohyd. Polym. 94, 800 (2013).CrossRefGoogle Scholar
- 12.M. Kotera, Y. Urushihara, D. Izumo, and T. Nishino, Thermochim. Acta 531, 1 (2012).CrossRefGoogle Scholar
- 13.J. E. Martín-Alfonso, C. Valencia, and J. M. Franco, Polym. Test. 32, 516 (2013).CrossRefGoogle Scholar
- 14.M. Commodo, I. Fabris, C. P. T. Groth, and O. L. Gülder, Energy Fuel 25, 2142 (2011).CrossRefGoogle Scholar
- 15.X. Fan, X. Y. Wei, and Z. M. Zong, Fuel 109, 28 (2013).CrossRefGoogle Scholar
- 16.Z. Li, X. Wei, H. Yan, and Z. Zong, Fuel 153, 176 (2015).CrossRefGoogle Scholar
- 17.F. C. Wang and W. C. Buzanowski, J. Chromatogr. A 891, 313 (2000).CrossRefGoogle Scholar
- 18.S. D. Kouame and E. Liu, Tribol. Int. 72, 58 (2014).CrossRefGoogle Scholar
- 19.J. Hu, X. Wei, J. Yao, L. Han, and Z. Zong, Tribol. Int. 39, 1469 (2006).CrossRefGoogle Scholar
- 20.M. Diaby, P. Singhal, M. Ousmane, M. Sablier, A. Le Négrate, M. E. Fassi, and V. Zymla, Fuel 107, 90 (2013).CrossRefGoogle Scholar
- 21.M. J. Yanjarappa and S. Sivaram, Prog. Polym. Sci. 27, 1347 (2002).CrossRefGoogle Scholar
- 22.G. Dlubek, D. Bamford, O. Henschke, J. Knorr, M. A. Alam, M. Arnold, and Th. Lüpke, Polymer 42, 5381 (2001).CrossRefGoogle Scholar
- 23.S. Amat, Z. Braham, Y. Le Dréau, J. Kister, and N. Dupuy, Talanta, 107, 219 (2013).CrossRefGoogle Scholar