Petroleum Chemistry

, Volume 58, Issue 3, pp 250–257 | Cite as

Thermal Degradation of Aviation Synthetic Lubricating Base Oil

Article
  • 9 Downloads

Abstract

The thermal degradation, under oxidative pyrolysis conditions, of two synthetic lubricating base oils, poly-α-olefin (PAO) and di-ester (DE), was investigated. The main objective of the study was to characterize their behavior in simulated “areo-engine” conditions, i.e. compared the thermal stability and identified the products of thermal decomposition as a function of exposure temperature. Detailed characterizations of products were performed with Fourier transform infrared spectrometry (FTIR), gas chromatography/ mass spectrometry (GC/MS), viscosity experiments and four-ball tests. The results showed that PAO had the lower thermal stability, being degraded at 200°C different from 300°C for DE. The degradation also effected the tribological properties of lubricating oil. Several by-products were identified during the thermal degradation of two lubricants. The majority of PAO products consisted of alkanes and olefins, while more oxygen-containing organic compounds were detected in DE samples according to the observation of GC/MS analysis. The related reaction mechanisms were discussed according to the experimental results.

Keywords

synthetic lubricating oil poly-α-olefin di-ester thermal stability viscosity degradation tribological properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. J. Bishop, Lubr. Sci. 4, 25 (1987).CrossRefGoogle Scholar
  2. 2.
    L. I. Kioupis and E. J. Maginn, J. Phys. Chem. B 103, 10781 (1999).CrossRefGoogle Scholar
  3. 3.
    B. K. Sharma and A. J. Stipanovic, Thermochim. Acta 402, 1 (2003).CrossRefGoogle Scholar
  4. 4.
    E. Beran, Tribol. Int. 43, 2372 (2010).CrossRefGoogle Scholar
  5. 5.
    J. Yao and J. Dong, Thermochim. Acta 262, 157 (1995).CrossRefGoogle Scholar
  6. 6.
    D. Du, S. Kim, W. Moon, S. Jin, and W. Kwon, Thermochim. Acta 407, 17 (2003).CrossRefGoogle Scholar
  7. 7.
    B. N. Barman, Tribol. Int. 35, 15 (2002).CrossRefGoogle Scholar
  8. 8.
    S. M. Powell, I. Snape, J. P. Bowman, B. Thompson, and J. S. Stark, J. Exp. Mar. Biol. Ecol. 322, 53 (2005).CrossRefGoogle Scholar
  9. 9.
    G. Mascolo, R. Rausa, G. Bagnuolo, G. Mininni, and L. Tinucci, J. Anal. Appl. Pyrol. 75, 167 (2006).CrossRefGoogle Scholar
  10. 10.
    J. Zhu, W. Liu, R. Chu, and X. Meng, Tribol. Int. 40, 10 (2007).CrossRefGoogle Scholar
  11. 11.
    S. H. P. Bettini, M. P. P. de Miranda Josefovich, P. A. R. Muñoz, C. Lotti, and L. H. C. Mattoso, Carbohyd. Polym. 94, 800 (2013).CrossRefGoogle Scholar
  12. 12.
    M. Kotera, Y. Urushihara, D. Izumo, and T. Nishino, Thermochim. Acta 531, 1 (2012).CrossRefGoogle Scholar
  13. 13.
    J. E. Martín-Alfonso, C. Valencia, and J. M. Franco, Polym. Test. 32, 516 (2013).CrossRefGoogle Scholar
  14. 14.
    M. Commodo, I. Fabris, C. P. T. Groth, and O. L. Gülder, Energy Fuel 25, 2142 (2011).CrossRefGoogle Scholar
  15. 15.
    X. Fan, X. Y. Wei, and Z. M. Zong, Fuel 109, 28 (2013).CrossRefGoogle Scholar
  16. 16.
    Z. Li, X. Wei, H. Yan, and Z. Zong, Fuel 153, 176 (2015).CrossRefGoogle Scholar
  17. 17.
    F. C. Wang and W. C. Buzanowski, J. Chromatogr. A 891, 313 (2000).CrossRefGoogle Scholar
  18. 18.
    S. D. Kouame and E. Liu, Tribol. Int. 72, 58 (2014).CrossRefGoogle Scholar
  19. 19.
    J. Hu, X. Wei, J. Yao, L. Han, and Z. Zong, Tribol. Int. 39, 1469 (2006).CrossRefGoogle Scholar
  20. 20.
    M. Diaby, P. Singhal, M. Ousmane, M. Sablier, A. Le Négrate, M. E. Fassi, and V. Zymla, Fuel 107, 90 (2013).CrossRefGoogle Scholar
  21. 21.
    M. J. Yanjarappa and S. Sivaram, Prog. Polym. Sci. 27, 1347 (2002).CrossRefGoogle Scholar
  22. 22.
    G. Dlubek, D. Bamford, O. Henschke, J. Knorr, M. A. Alam, M. Arnold, and Th. Lüpke, Polymer 42, 5381 (2001).CrossRefGoogle Scholar
  23. 23.
    S. Amat, Z. Braham, Y. Le Dréau, J. Kister, and N. Dupuy, Talanta, 107, 219 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Nan Wu
    • 1
    • 2
  • Zhimin Zong
    • 1
  • Yiwei Fei
    • 2
  • Jun Ma
    • 2
  • Feng Guo
    • 2
  1. 1.Key Laboratory of Coal Processing and Efficient Utilization, Ministry of EducationChina University of Mining and TechnologyJiangsu, XuzhouChina
  2. 2.Department of Aviation Oil and MaterialAir Force Logistics InstituteJiangsu, XuzhouChina

Personalised recommendations