Petroleum Chemistry

, Volume 58, Issue 3, pp 258–263 | Cite as

Single-Stage Catalytic Coconversion of Vegetable Oils and Alcohols to the Alkane–Aromatic Hydrocarbon Fraction without Using Molecular Hydrogen

  • A. V. Chistyakov
  • M. V. Tsodikov
  • M. V. Chudakova
  • M. A. Gubanov
  • P. A. Zharova
  • Z. Ya. Bukina
  • N. V. Kolesnichenko
  • A. E. Gekhman
  • S. N. Khadzhiev
Article
  • 8 Downloads

Abstract

A method for the production of a С3–С11 alkane–aromatic hydrocarbon (HC) fraction by the coconversion of a mixture of alcohols simulating biomass fermentation products and vegetable oil without using molecular hydrogen has been developed. A characteristic feature of this method is the occurrence of coupled alcohol aromatization reactions evolving hydrogen consumed for the hydrogenation of unsaturated HC moieties formed from fatty acid triglycerides in the presence of a pilot sample of the Pd–Zn/TsVM/Al2O3 catalyst. It has been found that the optimum amount of vegetable oil in the feed mixture is 25–50 vol %; this amount provides the target fraction yield of up to 95% on a fed carbon basis.

Keywords

vegetable oil ethanol fusel oils heterogeneous catalysis zeolite hydrogen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. B. Braginskii, Ross. Khim. Zh (Zh. Ross. Khim. Ob-va Im. D.I. Mendeleeva) 52 (6), 137 (2008).Google Scholar
  2. 2.
    A. Demirbas, Biodiesel: A Realistic Fuel Alternative for Diesel Engines (Springer, London, 2008).Google Scholar
  3. 3.
    S. D. Varfolomeev, I. I. Moiseev, and B. F. Myasoedov, Herald Russ. Acad. Sci. 79, 334 (2009).CrossRefGoogle Scholar
  4. 4.
    V. F. Sukhodol and L. N. Prikhod’ko, Izv. Vyssh. Uchebn. Zaved., Pishch. Tekhnol., No. 5, 23 (1983).Google Scholar
  5. 5.
    R. Johansson, S. L. Hruby, J. Rass-Hansen, and C. H. Christensen, Catal. Lett. 127, Article 1 (2009).Google Scholar
  6. 6.
    F. A. Yandieva, M. V. Tsodikov, A. V. Chistyakov, et al., Kinet. Catal. 51, 548 (2010).CrossRefGoogle Scholar
  7. 7.
    E. V. Slivinskii, N. V. Kolesnichenko, N. A. Markova, et al., RU Patent No. 2248341 (2003).Google Scholar
  8. 8.
    M. V. Tsodikov, F. A. Yandieva, V. Ya. Kugel, et al., Catal. Lett. 121, 199 (2008).CrossRefGoogle Scholar
  9. 9.
    A. V. Chistyakov, M. V. Tsodikov, V. Yu. Murzin, et al., Kinet. Catal. 52, 258 (2011).CrossRefGoogle Scholar
  10. 10.
    S. N. Khadzhiev, N. V. Kolesnichenko, M. V. Tsodikov, et al., RUF Patent No. 2466976 (2012).Google Scholar
  11. 11.
    Y. S. Prasad and N. N. Bakhshi, Appl. Catal. 18, 71 (1985).CrossRefGoogle Scholar
  12. 12.
    W. Charusiri, W. Yongchareon, and T. Vitidsant, J. Chem. Eng. 23, 349 (2006).Google Scholar
  13. 13.
    A. G. Dedov, A. S. Loktev, L. Kh. Kunashev, et al., Khim. Tekhnol., No. 8, 15 (2002).Google Scholar
  14. 14.
    M. V. Tsodikov, A. V. Chistyakov, M. A. Gubanov, et al., Pet. Chem. 53, 46 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Chistyakov
    • 1
    • 2
  • M. V. Tsodikov
    • 1
    • 2
  • M. V. Chudakova
    • 1
  • M. A. Gubanov
    • 1
  • P. A. Zharova
    • 1
    • 2
  • Z. Ya. Bukina
    • 1
  • N. V. Kolesnichenko
    • 1
  • A. E. Gekhman
    • 2
    • 3
  • S. N. Khadzhiev
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow oblastRussia
  3. 3.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations