Advertisement

Petroleum Chemistry

, Volume 57, Issue 14, pp 1259–1276 | Cite as

Group VIII Base Metal Nanocatalysts with Encapsulated Structures as an Area of Green Chemistry

  • Yu. H. BugnikovaEmail author
Article
  • 59 Downloads

Abstract

The review concerns recent progress in the design and synthesis of encapsulated nanomaterials based on Group VIII base metals useful for energy and environmental catalysis, including syngas conversion, CO2 dry reforming, steam reforming, methane conversion, and NH3 decomposition, as well as other nanocatalytic processes, for example, electrochemical synthesis. Catalysts with various encapsulated structures (core@shell, yolk@shell, core@tube, mesoporous, and layered structures) are described. The performance of encapsulated structures in catalytic reactions, including protection of metal nanoparticles from sintering which is favorable for activity preservation owing to the confinement effect and intensification of processes by multifunctional catalysts, is discussed. Prospects for application of encapsulated materials are analyzed.

Keywords

Group VIII base metals iron cobalt nickel encapsulated structures agglomeration confinement effect multifunctional catalysts catalyst design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. P. Goodman, I. A. T. Schaap, C. F. Tardin, C. M. Erben, R. M. Berry, C. F. Schmidt, and A. J. Turberfield, Science 310, 1661 (2005).Google Scholar
  2. 2.
    K. D. Gilroy, A. Ruditskiy, H.-C. Peng, D. Qin, and Y. Xia, Chem. Rev. 116, 10414 (2016).Google Scholar
  3. 3.
    Q. Luo, C. Hou, Y. Bai, R. Wang, and J. Liu, Chem. Rev. 116, 13571 (2016).Google Scholar
  4. 4.
    S. Bhattacharya and S. K. Samanta, Chem. Rev. 116, 11967 (2016).Google Scholar
  5. 5.
    T. M. Gür, S. F. Bent, and F. B. Prinz, J. Phys. Chem. 118, 21301.Google Scholar
  6. 6.
    B. C. Regan, S. Aloni, K. Jensen, R. O. Ritchie, and A. Zettl, Nano Lett. 5, 1730 (2005).Google Scholar
  7. 7.
    J. Grunes, J. Zhu, and G. A. Somorjai, Chem. Commun., 2257 (2003).Google Scholar
  8. 8.
    G. A. Somorjai and K. McCrea, Appl. Catal. A: Gen. 222, 3 (2001).Google Scholar
  9. 9.
    G. Ertl, D. Prigge, R. Schloegl, and M. Weiss, J. Catal. 79, 359 (1983).Google Scholar
  10. 10.
    G. Ertl, Angew. Chem. 120, 3578 (2008).Google Scholar
  11. 11.
    M. Haruta, N. Yamada, T. Kobayashi, and S. Iijima, J. Catal. 115, 301 (1989).Google Scholar
  12. 12.
    R. Narayanan and M. A. El-Sayed, Nano Lett. 4, 1343 (2004).Google Scholar
  13. 13.
    U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Heidelberg, 1996), Vol. 25.Google Scholar
  14. 14.
    N. Toshima and T. Yonezawa, New J. Chem. 22, 1179 (1998).Google Scholar
  15. 15.
    A. R. Tao, S. Habas, and P. Yang, Small 4, 310 (2008).Google Scholar
  16. 16.
    L. M. Liz-Marzán, Langmuir 22, 32 (2006).Google Scholar
  17. 17.
    C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, Chem. Rev. 105, 1025 (2005).Google Scholar
  18. 18.
    M. A. Mahmoud, C. E. Tabor, Y. Ding, Z. L. Wang, and M. A. El-Sayed, J. Am. Chem. Soc. 130, 4590 (2008).Google Scholar
  19. 19.
    H. Lee, S. E. Habas, S. Kweskin, D. Butcher, G. A. Somorjai, and P. Yang, Angew. Chem. 118, 7988 (2006).Google Scholar
  20. 20.
    H. Lee, S. E. Habas, S. Kweskin, D. Butcher, G. A. Somorjai, and P. Yang, Angew. Chem., Int. Ed. Engl. 45, 7824 (2006).Google Scholar
  21. 21.
    K. M. Bratlie, H. Lee, K. Komvopoulos, P. Yang, and G. A. Somorjai, Nano Lett. 7, 3097 (2007).Google Scholar
  22. 22.
    S. M. Davis, F. Zaera, and G. A. Somorjai, J. Catal. 85, 206 (1984).Google Scholar
  23. 23.
    P. C. Anastas and J. C. Warner, Green Chemistry: Theory and Practice (Oxford Univ. Press, New York, 1998).Google Scholar
  24. 24.
    J. A. Gladysz, Pure Appl. Chem. 73, 1319 (2001).Google Scholar
  25. 25.
    V. Polshettiwar and R. S. Varma, Green Chem. 12, 743 (2010).Google Scholar
  26. 26.
    S. N. Khadzhiev, Pet. Chem. 1 (6), 465 (2016).Google Scholar
  27. 27.
    D. Pakhare and J. Spivey, Chem. Soc. Rev. 43, 7813 (2014).Google Scholar
  28. 28.
    S. D. Angeli, L. Turchetti, G. Monteleone, and A. A. Lemonidou, Appl. Catal. B, 18134 (2016).Google Scholar
  29. 29.
    R. Jin, Nanotechnol. Rev. 1, 31 (2012).Google Scholar
  30. 30.
    H. C. Zeng, Acc. Chem. Res. 46, 226 (2013).Google Scholar
  31. 31.
    J. Wen, X. Li, W. Liu, Y. Fang, J. Xie, and Y. Xu, Chinese J. Catal. 36, 2049 (2015).Google Scholar
  32. 32.
    S. Rawalekar and T. Mokari, Adv. Energy Mater. 3, 12 (2013).Google Scholar
  33. 33.
    B. M. Weckhuysen, Angew. Chem., Int. Ed. Engl. 48, 4910 (2009).Google Scholar
  34. 34.
    H. Tian, X. Li, L. Zeng, and J. Gong, ACS Catal. 5 (8), 4959 (2015).Google Scholar
  35. 35.
    C. -J. Jia and F. Schuth, Phys. Chem. Chem. Phys. 13, 2457 (2011).Google Scholar
  36. 36.
    Catalysis from A to Z: A Concise Encyclopedia, Ed. by B. Cornils, W. A. Herrmann, H.-W. Zanthoff, and C.-H. Wong (Wiley-VCH and KGaA, Weinheim, 2013), p. 1782.Google Scholar
  37. 37.
    Catalysis from A to Z: A Concise Encyclopedia, Ed. by B. Cornils, W. A. Herrmann, H.-W. Zanthoff, and C.-H. Wong, (Wiley-VCH and KGaA, Weinheim, 2013) 1951.Google Scholar
  38. 38.
    D. Pakhare and J. Spivey, Chem. Soc. Rev. 43, 7813 (2014).Google Scholar
  39. 39.
    Catalysis from A to Z: A Concise Encyclopedia, Ed. by B. Cornils, W. A. Herrmann, H.-W. Zanthoff, and C.-H. Wong (Wiley-VCH and KGaA, Weinheim, 2013), p. 534.Google Scholar
  40. 40.
    Catalysis from A to Z: A Concise Encyclopedia, Ed. by B. Cornils, W. A. Herrmann, H.-W. Zanthoff, and C.-H. Wong (Wiley-VCH and KGaA, Weinheim, 2013), p. 1248.Google Scholar
  41. 41.
    Catalysis from A to Z: A Concise Encyclopedia, Ed. by B. Cornils, W. A. Herrmann, H.-W. Zanthoff, and C.-H. Wong (Wiley-VCH and KGaA, Weinheim, 2013), p. 1564.Google Scholar
  42. 42.
    T. Fu and Z. Li, Chem. Eng. Sci. 2, 3 (2015).Google Scholar
  43. 43.
    L. V. Mattos, G. Jacobs, B. H. Davis, and F. B. Noronha, Chem. Rev. 112, 4094 (2012).Google Scholar
  44. 44.
    W. Wang and J. Gong, Front. Chem. Sci. Eng. 5, 2 (2011).Google Scholar
  45. 45.
    C.-J. Liu, J. Ye, J. Jiang, and Y. Pan, Chem. Cat. Chem. 529 (2011).Google Scholar
  46. 46.
    C. Ratnasamy and J. P. Wagner, Catal. Rev. 51, 325 (2009).Google Scholar
  47. 47.
    X. Xie, Y. Li, Z. -Q. Liu, M. Haruta, and W. Shen, Nature 458, 746 (2009).Google Scholar
  48. 48.
    J. Sehested, A. Carlsson, T. V. W. Janssens, P. L. Hansen, and A. K. Datye, J. Catal. 197, 200 (2001).Google Scholar
  49. 49.
    J. Sehested, J. Catal. 217, 417 (2003).Google Scholar
  50. 50.
    J. Sehested, J. A. P. Gelten, I. N. Remediakis, H. Bengaard, and J. K. Norskov, J. Catal. 223, 432 (2004).Google Scholar
  51. 51.
    L. De Rogatis, M. Cargnello, V. Gombac, B. Lorenzut, T. Montini, and P. Fornasiero, Chem. Suis. Chem. 3, 24 (2010).Google Scholar
  52. 52.
    Z.-C. Zhang, B. Xu, and X. Wang, Chem. Soc. Rev. 43, 7870 (2014).Google Scholar
  53. 53.
    F. Zaera, Chem. Soc. Rev. 42, 2746 (2013).Google Scholar
  54. 54.
    A. Cao, R. Lu, and G. Veser, Phys. Chem. Chem. Phys. 12, 13499 (2010).Google Scholar
  55. 55.
    S. Li and J. Gong, Chem. Soc. Rev. 43, 7245 (2014).Google Scholar
  56. 56.
    X. Guo, G. Fang, G. Li, H. Ma, H. Fan, L. Yu, C. Ma, X. Wu, D. Deng, M. Wei, D. Tan, R. Si, S. Zhang, J. Li, L. Sun, Z. Tang, X. Pan, and X. Bao, Science 344, 616 (2014).Google Scholar
  57. 57.
    X. Pan and X. Bao, Acc. Chem. Res. 44, 553 (2011).Google Scholar
  58. 58.
    F. Yang, D. Deng, X. Pan, Q. Fu, and X. Bao, Natl. Sci. Rev. 2, 183 (2015).Google Scholar
  59. 59.
    G. Fan, F. Li, G. D. Evans, and X. Duan, Chem. Soc. Rev. 43, 7040 (2014).Google Scholar
  60. 60.
    M. A. Pen~a and J. L. G. Fierro, Chem. Rev. 101, 1981 (2001).Google Scholar
  61. 61.
    J. Zhu, H. Li, L. Zhong, P. Xiao, X. Xu, X. Yang, Z. Zhao, and J. Li, ACS Catal. 4, 2917 (2014).Google Scholar
  62. 62.
    Q. Zhang, I. Lee, J. B. Joo, F. Zaera, and Y. Yin, Acc. Chem. Res. 46, 1816 (2012).Google Scholar
  63. 63.
    R. G. Chaudhuri and S. Paria, Chem. Rev. 112, 2373 (2011).Google Scholar
  64. 64.
    Y. Yin, M. R. Rioux, K. C. Erdonmez, S. Hughes, A. G. Somorjai, and A. P. Alivisatos, Science 304, 711 (2004).Google Scholar
  65. 65.
    M. Priebe and K. M. Fromm, Chem.-Eur. J. 21, 3854 (2015).Google Scholar
  66. 66.
    J. Bao, J. He, Y. Zhang, Y. Yoneyama, and N. Tsubaki, Angew. Chem. Int. Ed. 47, 353 (2008).Google Scholar
  67. 67.
    S. H. Joo, J. Y. Park, C. -K. Tsung, Y. Yamada, P. Yang, and G. A. Somorjai, Nat. Mater. 8, 126 (2009).Google Scholar
  68. 68.
    C. Zhang, S. Li, T. Wang, G. Wu, X. Ma, and J. Gong, Chem. Commun. 49, 10647 (2013).Google Scholar
  69. 69.
    S. Liu and M.-Y. Han, Chem. Asian J. 5, 36 (2010).Google Scholar
  70. 70.
    S. Takenaka, H. Umebayashi, E. Tanabe, H. Matsune, and M. Kishida, J. Catal. 245, 392 (2007).Google Scholar
  71. 71.
    S. Takenaka, Y. Orita, H. Umebayashi, H. Matsune, and M. Kishida, Appl. Catal., A 351, 189 (2008).Google Scholar
  72. 72.
    K. A. Dahlberg and J. W. Schwank, Chem. Mater. 24, 2635 (2012).Google Scholar
  73. 73.
    W. Stöber, A. Fink, and E. Bohn, J. Colloid Interface Sci. 26, 62 (1968).Google Scholar
  74. 74.
    Y. J. Wong, L. Zhu, W. S. Teo, Y. W. Tan, Y. Yang, C. Wang, and H. Chen, J. Am. Chem. Soc. 133, 11422 (2011).Google Scholar
  75. 75.
    W. Li and D. Zhao, Adv. Mater. 25, 142 (2013).Google Scholar
  76. 76.
    M. Feyen, C. Weidenthaler, R. Guttel, K. Schlichte, U. Holle, A.-H. Lu, and F. Schuth, Chem.-Eur. J. 17, 598 (2011).Google Scholar
  77. 77.
    L. Li, S. He, Y. Song, J. Zhao, W. Ji, and C.-T. Au, J. Catal. 288, 54 (2012).Google Scholar
  78. 78.
    J. Zhang and F. Li, Appl. Catal. 176–177, 513.Google Scholar
  79. 79.
    B. Zeng, B. Hou, L. Jia, D. Li, and Y. Sun, J. Mol. Catal. A: Chem. 379, 263 (2013).Google Scholar
  80. 80.
    B. Zeng, B. Hou, L. Jia, J. Wang, C. Chen, D. Li, and Y. Sun, Catal. Sci. Technol. 3, 3250 (2013).Google Scholar
  81. 81.
    B. Zeng, B. Hou, L. Jia, J. Wang, C. Chen, Y. Sun, and D. Li, Chem. Cat. Chem. 5, 3794 (2013).Google Scholar
  82. 82.
    P. R. Karandikar, Y.-J. Lee, G. Kwak, M. H. Woo, S.-J. Park, H.-G. Park, K.-S. Ha, and K.-W. Jun, J. Phys. Chem. 118, 21975.Google Scholar
  83. 83.
    Y. Li, S. Liu, L. Yao, W. Ji, and C.-T. Au, Catal. Commun. 11, 368 (2010).Google Scholar
  84. 84.
    J. Park and H. Song, Nano Res. 4, 33 (2011).Google Scholar
  85. 85.
    J. C. Park, H. J. Lee, J. Y. Kim, K. H. Park, and H. Song, J. Phys. Chem. 114, 6381.Google Scholar
  86. 86.
    Z. Li, L. Mo, Y. Kathiraser, and S. Kawi, ACS Catal. 4, 1526 (2014).Google Scholar
  87. 87.
    J. C. Park, H. J. Lee, H. S. Jung, M. Kim, H. J. Kim, K. H. Park, and H. Song, Chem. Cat. Chem. 3, 755 (2011).Google Scholar
  88. 88.
    J. C. Park, J. U. Bang, J. Lee, C. H. Ko, and H. Song, J. Mater. Chem. 20, 1239 (2010).Google Scholar
  89. 89.
    L. Li, Y. Yao, B. Sun, Z. Fei, H. Xia, J. Zhao, W. Ji, and C.-T. Au, Chem. Cat. Chem. 5, 3781 (2013).Google Scholar
  90. 90.
    L. Li, P. Lu, Y. Yao, and W. Ji, Catal. Commun. 26, 72 (2012).Google Scholar
  91. 91.
    Z. Li, Y. Kathiraser, J. Ashok, U. Oemar, and S. Kawi, Langmuir 30, 14694 (2014).Google Scholar
  92. 92.
    L. Mo, K. K. M. Leong, and S. Kawi, Catal. Sci. Technol. 4, 2107 (2014).Google Scholar
  93. 93.
    R. Xie, H. Wang, P. Gao, L. Xia, Z. Zhang, T. Zhao, and Y. Sun, Appl. Catal., A 492, 93 (2015).Google Scholar
  94. 94.
    X. Sun and Y. Li, Angew. Chem., Int. Ed. Engl. 43, 597 (2004).Google Scholar
  95. 95.
    G. Yu, B. Sun, Y. Pei, S. Xie, S. Yan, M. Qiao, K. Fan, X. Zhang, and B. Zong, J. Am. Chem. Soc. 132, 935 (2010).Google Scholar
  96. 96.
    Q. Yan, C. Wan, J. Liu, J. Gao, F. Yu, J. Zhang, and Z. Cai, Green Chem. 15, 1631 (2013).Google Scholar
  97. 97.
    B. Li, B. Sun, X. Qian, W. Li, Z. Wu, Z. Sun, M. Qiao, M. Duke, and D. Zhao, J. Am. Chem. Soc. 135, 1181 (2013).Google Scholar
  98. 98.
    J. Zhang, X. Zhang, M. Tu, W. Liu, H. Liu, J. Qiu, L. Zhou, Z. Shao, H. L. Ho, and K. L. J. Yeung, Power Sources 198, 14 (2012).Google Scholar
  99. 99.
    J. Zhang, X. Zhang, W. Liu, H. Liu, J. Qiu, and K. L. Yeung, J. Power Sources 246, 74 (2014).Google Scholar
  100. 100.
    J. Xiao, X. Pan, S. Guo, P. Ren, and X. Bao, J. Am. Chem. Soc. 137, 477 (2014).Google Scholar
  101. 101.
    X. Pan and X. Bao, Chem. Commun., 6271 (2008).Google Scholar
  102. 102.
    C. Wang, S. Guo, X. Pan, W. Chen, and X. Bao, J. Mater. Chem. 18, 5782 (2008).Google Scholar
  103. 103.
    P. M. Ajayan, T. W. Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki, and H. Hiura, Nature 362, 522 (1993).Google Scholar
  104. 104.
    C. Guerret-Piecourt, Y. L. Bouar, A. Lolseau, and H. Pascard, Nature 372, 761 (1994).Google Scholar
  105. 105.
    D. Ugarte, A. Chatelain, and W. A. Deheer, Science 274, 1897 (1996).Google Scholar
  106. 106.
    H. Shiozawa, T. Pichler, A. Gruneis, R. Pfeiffer, H. Kuzmany, Z. Liu, K. Suenaga, and H. Kataura, Adv. Mater. 20, 1443 (2008).Google Scholar
  107. 107.
    E. Castillejos, P.-J. Debouttiere, L. Roiban, A. Solhy, V. Martinez, Y. Kihn, O. Ersen, K. Philippot, B. Chaudret, and P. Serp, Angew. Chem., Int. Ed. Engl. 48, 2529 (2009).Google Scholar
  108. 108.
    W. Chen, X. Pan, M.-G. Willinger, D. S. Su, and X. Bao, J. Am. Chem. Soc. 128, 3136 (2006).Google Scholar
  109. 109.
    F. Cao, K. Zhong, A. Gao, C. Chen, Q. Li, and Q. Chen, J. Phys. Chem. B 111, 1724 (2007).Google Scholar
  110. 110.
    Q. Yuan, A.-X. Yin, C. Luo, L.-D. Sun, Y.-W. Zhang, W.-T. Duan, H.-C. Liu, and C.-H. Yan, J. Am. Chem. Soc. 130, 3465 (2008).Google Scholar
  111. 111.
    C. Xing, G. Yang, D. Wang, C. Zeng, Y. Jin, R. Yang, Y. Suehiro, and N. Tsubaki, Catal. Today 215, 24 (2013).Google Scholar
  112. 112.
    M. Trepanier, A. K. Dalai, and N. Abatzoglou, Appl. Catal., A 374, 79 (2010).Google Scholar
  113. 113.
    H. Zhang, Y. A. Alhamed, W. Chu, Z. Ye, A. AlZahrani, and L. Petrov, Appl. Catal., A 464–465, 156 (2013).Google Scholar
  114. 114.
    Q. Ma, D. Wang, M. Wu, T. Zhao, Y. Yoneyama, and N. Tsubaki, Fuel 108, 430 (2013).Google Scholar
  115. 115.
    K. J. Ziegler, Z. Gu, H. Peng, E. L. Flor, R. H. Hauge, and R. E. Smalley, J. Am. Chem. Soc. 127, 1541 (2005).Google Scholar
  116. 116.
    A. Tavasoli, R. M. M. Abbaslou, M. Trepanier, and A. K. Dalai, Appl. Catal., A 345, 134 (2008).Google Scholar
  117. 117.
    J. J. Rodrigues, F. A. N. Fernandes, and M. G. F. Rod-rigues, Appl. Catal., A 468, 32 (2013).Google Scholar
  118. 118.
    X. Pan, F. Zan, W. Chen, Y. Ding, H. Luo, and X. Bao, Nat. Mater 6, 507 (2007).Google Scholar
  119. 119.
    Y. Zhu, Y. Ye, S. Zhang, M. E. Leong, and F. Tao, Langmuir 28, 8275 (2012).Google Scholar
  120. 120.
    H. Chen, Y. Yang, Z. Hu, K. Huo, Y. Ma, Y. Chen, X. Wang, and Y. Lu, J. Phys. Chem. B 110, 16422.Google Scholar
  121. 121.
    J. Lu, L. Yang, B. Xu, Q. Wu, D. Zhang, S. Yuan, Y. Zhai, X. Wang, Y. Fan, and Z. Hu, ACS Catal. 4, 613 (2014).Google Scholar
  122. 122.
    B. C. Gates, Chem. Rev. 95, 511 (1995).Google Scholar
  123. 123.
    E. Iglesia, S. L. Soled, and R. A. Fiato, J. Catal. 137, 212 (1992).Google Scholar
  124. 124.
    C. H. Bartholomew, R. B. Pannell, and J. L. Butler, J. Catal. 65, 335 (1980).Google Scholar
  125. 125.
    J.-P. Tessonnier, O. Ersen, G. Weinberg, C. Pham- Huu, D. S. Su, and R. Schlogl, ACS Nano 3, 2081 (2009).Google Scholar
  126. 126.
    C. Zhang, W. Zhu, S. Li, G. Wu, X. Ma, X. Wang, and J. Gong, Chem. Commun. 49, 9383 (2013).Google Scholar
  127. 127.
    G. Prieto, M. Shakeri, K. P. de Jong, and P. E. de Jongh, ACS Nano 8, 2522 (2014).Google Scholar
  128. 128.
    P. Munnik, M. E. Z. Velthoen, P. E. de Jongh, K. P. de Jong, and C. J. Gommes, Angew. Chem., Int. Ed. Engl. 53, 9493 (2014).Google Scholar
  129. 129.
    C. Perego and R. Millini, Chem. Soc. Rev. 42, 3956 (2013).Google Scholar
  130. 130.
    N. Linares, A. M. Silvestre-Albero, E. Serrano, J. Silvestre- Albero, and J. Garcia-Martinez, Chem. Soc. Rev. 43, 7681 (2014).Google Scholar
  131. 131.
    S. Valange, R. Palacio, A. Charmot, J. Barrault, A. Louati, and Z. Gabelica, J. Mol. Catal. A: Chem. 305, 24 (2009).Google Scholar
  132. 132.
    R. Gómez-Reynoso, J. Ramírez, R. Nares, R. Luna, and F. Murrieta, Catal. Today 107–108, 926 (2005).Google Scholar
  133. 133.
    X.-K. Li, W.-J. Ji, J. Zhao, S.-J. Wang, and C.-T. Au, J. Catal. 236, 181 (2005).Google Scholar
  134. 134.
    M. Zhang, S. Ji, L. Hu, F. Yin, C. Li, and H. Liu, Chin. J. Catal. 27, 777 (2006).Google Scholar
  135. 135.
    D. Liu, R. Lau, A. Borgna, and Y. Yang, Appl. Catal., A 358, 110 (2009).Google Scholar
  136. 136.
    H. Liu, H. Wang, J. Shen, Y. Sun, and Z. Liu, Appl. Catal., A 337, 138 (2008).Google Scholar
  137. 137.
    T. Tsoncheva, L. Ivanova, J. Rosenholm, and M. Linden, Appl. Catal. 89, 365.Google Scholar
  138. 138.
    K. Yamamoto, Y. Sunagawa, H. Takahashi, and A. Muramatsu, Chem. Commun. 348 (2005).Google Scholar
  139. 139.
    I. Lopes, N. El Hassan, H. Guerba, G. Wallez, and A. Davidson, Chem. Mater. 18, 5826 (2006).Google Scholar
  140. 140.
    J. van der Meer, I. Bardez, F. Bart, P.-A. Albouy, G. Wallez, and A. Davidson, Microporous Mesoporous Mater. 118, 183 (2009).Google Scholar
  141. 141.
    J. Taghavimoghaddam, G. P. Knowles, and A. L. Chaffee, J. Mol. Catal. A: Chem. 358, 79 (2012).Google Scholar
  142. 142.
    J. van der Meer, I. Bardez-Giboire, C. Mercier, B. Revel, A. Davidson, and R. Denoyel, J. Phys. Chem. 114, 3507.Google Scholar
  143. 143.
    A. Ungureanu, B. Dragoi, A. Chirieac, S. Royer, D. Duprez, and E. Dumitriu, J. Mater. Chem. 21, 12529 (2011).Google Scholar
  144. 144.
    A. Ungureanu, B. Dragoi, A. Chirieac, C. Ciotonea, S. Royer, D. Duprez, A. S. Mamede, and E. Dumitriu, ACS Appl. Mater. Interfaces 5, 3010 (2013).Google Scholar
  145. 145.
    H. Friedrich, J. R. A. Sietsma, P. E. de Jongh, A. J. Verkleij, and K. P. de Jong, J. Am. Chem. Soc. 129, 10249 (2007).Google Scholar
  146. 146.
    J. R. A. Sietsma, J. D. Meeldijk, J. P. Breejen, M. Versluijs-Helder, A. J. van Dillen, P. E. de Jongh, and K. P. de Jong, Angew. Chem., Int. Ed. Engl. 46, 4547 (2007).Google Scholar
  147. 147.
    J. R. A. Sietsma, J. D. Meeldijk, M. Versluijs-Helder, A. Broersma, A. J. van Dillen, P. E. de Jongh, and K. P. de Jong, Chem. Mater. 20, 2921 (2008).Google Scholar
  148. 148.
    M. Wolters, P. Munnik, J. H. Bitter, P. E. de Jongh, and K. P. de Jong, J. Phys. Chem. 115, 3332.Google Scholar
  149. 149.
    P. Munnik, P. E. de Jongh, and K. P. de Jong, J. Am. Chem. Soc. 136, 7333 (2014).Google Scholar
  150. 150.
    T. Xie, L. Shi, J. Zhang, and D. Zhang, Chem. Commun. 50, 7250 (2014).Google Scholar
  151. 151.
    D. Liu, X. Y. Quek, W. N. E. Cheo, R. Lau, A. Borgna, and Y. Yang, J. Catal. 266, 380 (2009).Google Scholar
  152. 152.
    X.-Y. Quek, D. Liu, W. N. E. Cheo, H. Wang, Y. Chen, and Y. Yang, Appl. Catal. 95, 374.Google Scholar
  153. 153.
    Z. Liu, J. Zhou, K. Cao, W. Yang, H. Gao, Y. Wang, and H. Li, Appl. Catal. 125, 324.Google Scholar
  154. 154.
    D. Li, L. Zeng, X. Li, C. Zhang, X. Wang, H. Ma, S. Assabumrungrat, and J. Gong, Appl. Catal. 176–177, 532 (2015).Google Scholar
  155. 155.
    S. Zhang, S. Muratsugu, N. Ishiguro, and M. Tada, ACS Catal. 3, 1855 (2013).Google Scholar
  156. 156.
    Y. Zhao, Y. Zhang, J. Chen, J. Li, K. Liew, and M. R. B. Nordin, Chem. Cat. Chem. 4, 265 (2012).Google Scholar
  157. 157.
    N. Wang, K. Shen, X. Yu, W. Qian, and W. Chu, Catal. Sci. Technol. 3, 2278 (2013).Google Scholar
  158. 158.
    J. Čejka, Appl. Catal., A 254, 327 (2003).Google Scholar
  159. 159.
    W. H. Casey, Chem. Rev. 106, 1 (2005).Google Scholar
  160. 160.
    Z.-X. Li, F.-B. Shi, L.-L. Li, T. Zhang, and C.-H. Yan, Phys. Chem. Chem. Phys. 13, 2488 (2011).Google Scholar
  161. 161.
    V. Subramanian, E. S. Gnanakumar, D.-W. Jeong, W.-B. Han, C. S. Gopinath, and H.-S. Roh, Chem. Commun. 49, 11257 (2013).Google Scholar
  162. 162.
    S. M. Morris, P. F. Fulvio, and M. Jaroniec, J. Am. Chem. Soc. 130, 15210 (2008).Google Scholar
  163. 163.
    L. Xu, H. Song, and L. Chou, Catal. Sci. Technol. 1, 1032 (2011).Google Scholar
  164. 164.
    K. Tao, L. Shi, Q. Ma, D. Wang, C. Zeng, C. Kong, M. Wu, L. Chen, S. Zhou, Y. Hu, and N. Tsubaki, Chem. Eng. J. 221, 25 (2013).Google Scholar
  165. 165.
    J. Horiguchi, Y. Kobayashi, S. Kobayashi, Y. Yamazaki, K. Omata, D. Nagao, M. Konno, and M. Yamada, Appl. Catal., A 392, 86 (2011).Google Scholar
  166. 166.
    H. Tian, S. Li, L. Zeng, H. Ma, and J. Gong, Sci. China Mater. 58, 9 (2015).Google Scholar
  167. 167.
    W. Shen, K. Komatsubara, T. Hagiyama, A. Yoshida, and S. Naito, Chem. Commun. 6490 (2009).Google Scholar
  168. 168.
    L. Xu, H. Song, and L. Chou, Appl. Catal. 108–109, 177.Google Scholar
  169. 169.
    L. Xu, H. Song, and L. Chou, ACS Catal. 2, 1331 (2012).Google Scholar
  170. 170.
    L. Xu, Z. Miao, H. Song, W. Chen, and L. Chou, Catal. Sci. Technol. 1759 (2014).Google Scholar
  171. 171.
    N. Wang, K. Shen, L. Huang, X. Yu, W. Qian, and W. Chu, ACS Catal. 3, 1638 (2013).Google Scholar
  172. 172.
    N. Wang, Z. Xu, J. Deng, K. Shen, X. Yu, W. Qian, W. Chu, and F. Wei, Chem. Cat. Chem. 6, 1470 (2014).Google Scholar
  173. 173.
    Q. Liu, J. Gao, F. Gu, X. Lu, Y. Liu, H. Li, Z. Zhong, B. Liu, G. Xu, and F. Su, J. Catal. 326, 127 (2015).Google Scholar
  174. 174.
    A. Chen, T. Miyao, K. Higashiyama, H. Yamashita, and M. Watanabe, Angew. Chem., Int. Ed. Engl. 49, 9895 (2010).Google Scholar
  175. 175.
    X. Shang, X. Wang, W. Nie, X. Guo, X. Zou, W. Ding, and X. Lu, J. Mater. Chem. 22, 23806 (2012).Google Scholar
  176. 176.
    M. Tan, X. Wang, X. Shang, X. Zou, X. Lu, and W. Ding, J. Catal. 314, 117 (2014).Google Scholar
  177. 177.
    M. Tan, X. Wang, X. Wang, X. Zou, W. Ding, and X. Lu, J. Catal. 329, 151 (2015).Google Scholar
  178. 178.
    C. Liang, Z. Li, and S. Dai, Angew. Chem., Int. Ed. Engl. 47, 3696 (2008).Google Scholar
  179. 179.
    L. Geng, X. Zhang, W. Zhang, M. Jia, and G. Liu, Chem. Commun. 50, 2965 (2014).Google Scholar
  180. 180.
    K.-S. Ha, G. Kwak, K.-W. Jun, J. Hwang, and J. Lee, Chem. Commun. 49, 5141 (2013).Google Scholar
  181. 181.
    A.-H. Lu, J.-J. Nitz, M. Comotti, C. Weidenthaler, K. Schlichte, C. W. Lehmann, O. Terasaki, and F. Schuth, J. Am. Chem. Soc. 132, 14152 (2010).Google Scholar
  182. 182.
    Z. Wu, W. Li, P. A. Webley, and D. Zhao, Adv. Mater. 24, 485 (2012).Google Scholar
  183. 183.
    Z. Sun, B. Sun, M. Qiao, J. Wei, Q. Yue, C. Wang, Y. Deng, S. Kaliaguine, and D. Zhao, J. Am. Chem. Soc. 134, 17653 (2012).Google Scholar
  184. 184.
    Y. Yang, L. Jia, B. Hou, D. Li, J. Wang, and Y. Sun, J. Phys. Chem. 118, 268.Google Scholar
  185. 185.
    Y. Yang, L. Jia, B. Hou, D. Li, J. Wang, and Y. Sun, Chem. Cat. Chem. 6, 319 (2014).Google Scholar
  186. 186.
    S. Li, C. Zhang, Z. Huang, G. Wu, and J. Gong, Chem. Commun. 49, 4226 (2013).Google Scholar
  187. 187.
    N. Sun, X. Wen, F. Wang, W. Wei, and Y. Sun, Energy Environ. Sci. 3, 366 (2010).Google Scholar
  188. 188.
    M. Seipenbusch and A. Binder, J. Phys. Chem. 113, 20606.Google Scholar
  189. 189.
    J. Lu, B. Fu, M. C. Kung, G. Xiao, J. W. Elam, H. H. Kung, and P. C. Stair, Science 335, 1205 (2012).Google Scholar
  190. 190.
    B. O’Neill, D. H. K. Jackson, J. Lee, C. Canlas, P. C. Stair, C. L. Marshall, J. W. Elam, T. F. Kuech, J. A. Dumesic, and G. W. Huber, ACS Catal. 5, 1804 (2015).Google Scholar
  191. 191.
    Z. Ma, S. Brown, J. Y. Howe, S. H. Overbury, and S. Dai, J. Phys. Chem. 112, 9448.Google Scholar
  192. 192.
    X. Liang, J. Li, M. Yu, C. N. McMurray, J. L. Falconer, and A. W. Weimer, ACS Catal. 1, 1162 (2011).Google Scholar
  193. 193.
    J. Lu, J. W. Elam, and P. C. Stair, Acc. Chem. Res. 1806 (2013).Google Scholar
  194. 194.
    D. H. Kim, S. Y. Kim, S. W. Han, Y. K. Cho, M.-G. Jeong, E. J. Park, and Y. D. Kim, Appl. Catal., A 495, 184 (2015).Google Scholar
  195. 195.
    D. Kim, K.-D. Kim, H. Seo, N. Dey, M. Kim, Y. Kim, D. Lim, and K. Lee, Catal. Lett. 141, 854 (2011).Google Scholar
  196. 196.
    H. O. Seo, J. K. Sim, K.-D. Kim, Y. D. Kim, D. C. Lim, and S. H. Kim, Appl. Catal., A 451, 43 (2013).Google Scholar
  197. 197.
    J. Lee, D. H. K. Jackson, T. Li, R. E. Winans, J. A. Dumesic, T. F. Kuech, and G. W. Huber, Energy Environ. Sci. 7, 1657 (2014).Google Scholar
  198. 198.
    T. D. Gould, A. Izar, A. W. Weimer, J. L. Falconer, and J. W. Medlin, ACS Catal. 4, 2714 (2014).Google Scholar
  199. 199.
    T. D. Gould, A. M. Lubers, B. T. Neltner, J. V. Carrier, A. W. Weimer, J. L. Falconer, and J. W. Medlin, J. Catal. 303, 9 (2013).Google Scholar
  200. 200.
    T. D. Gould, M. M. Montemore, A. M. Lubers, L. D. Ellis, A. W. Weimer, J. L. Falconer, and J. W. Medlin, Appl. Catal., A 492, 107 (2015).Google Scholar
  201. 201.
    Y. B. Dudkina, T. V. Gryaznova, Y. N. Osin, V. V. Salnikov, N. A. Davydov, S. V. Fedorenko, A. R. Mustafina, D. A. Vicic, O. G. Sinyashin, and Y. G. Budnikova, Dalton Trans. 44, 8833 (2015).Google Scholar
  202. 202.
    M. Khrizanforov, S. Fedorenko, S. Strekalova, K. Kholin, A. Mustafina, M. Zhilkin, V. Khrizanforova, Y. Osin, V. Salnikov, T. Gryaznova, and Y. Budnikova, Dalton Trans. 45, 11976 (2016).Google Scholar
  203. 203.
    G. K. Budnikov, G. A. Evtyugin, and V. N. Maistrenko, Modified Electrodes for Voltammetry in Chemistry, Biology, and Medicine (BINOM. Laboratoriya znanii, Moscow, 2010) [in Russian].Google Scholar
  204. 204.
    L. G. Shaidarova and G. K. Budnikov, Amperometric Sensors with Catalytic Properties in Organic Voltammetry in Problems of Analytical Chemistry, Vol. 14: Chemical Sensors, Ed. by Yu. G. Vlasov (Nauka, Moscow, 2011) [in Russian].Google Scholar
  205. 205.
    G. K. Budnikov and V. I. Shirokova, Zh. Anal. Khim. 68 (8), 732 (2013).Google Scholar
  206. 206.
    V. V. Khrizanforova, I. R. Knyazeva, V.I. Matveeva (Sokolova), I. R. Nizameev, T. V. Gryaznova, M. K. Kadirov, A. R. Burilov, O. G. Sinyashin, and Yu. N. Budnikova, Electrocatalysis 6, 357 (2015).Google Scholar
  207. 207.
    M. K. Kadirov, I. R. Knyazeva, I. R. Nizameev, R.A.Safiullin, V. I. Matveeva, K. V. Kholin, V.V.Khrizanforova, T. I. Ismaev, A. R. Burilov, Yu. H. Budnikova, and O. G. Sinyashin, Dalton Trans. 45, 16157 (2016).Google Scholar
  208. 208.
    E. I. Musina, V. V. Khrizanforova, I. D. Strelnik, M. I. Valitov, Y. S. Spiridonova, D. B. Krivolapov, I. A. Litvinov, M. K. Kadirov, P. Lonnecke, E. Hey-Hawkins, Y. H. Budnikova, A. A. Karasik, and O. G. Sinyashin, Chemistry: A European J. 20, 3169 (2014).Google Scholar
  209. 209.
    Z. -S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng, and K. Mullen, J. Am. Chem. Soc. 134, 9082 (2012).Google Scholar
  210. 210.
    K. M. Choi, K. Na, G. A. Somorjai, and O. M. Yaghi, J. Am. Chem. Soc. 137, 7810 (2015).Google Scholar
  211. 211.
    B. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, and T. Zhang, Nat. Chem. 3, 634 (2011).Google Scholar
  212. 212.
    X.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, and T. Zhang, Acc. Chem. Res. 46, 1740 (2013).Google Scholar
  213. 213.
    Y. Zhang, X. Weng, H. Li, H. Li, M. Wei, J. Xiao, Z. Liu, M. Chen, Q. Fu, and X. Bao, Nano Lett. 15, 3616 (2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific CenterRussian Academy of SciencesKazanRussia

Personalised recommendations