Advertisement

Computational Mathematics and Mathematical Physics

, Volume 59, Issue 10, pp 1732–1741 | Cite as

Change in Separation Flow Regimes over Obstacles in Subsonic Gas Flow as a Manifestation of Viscous Forces: Numerical Results

  • A. D. Savel’evEmail author
Article
  • 12 Downloads

Abstract

The unsteady subsonic viscous gas flows over forward- and backward-facing steps on a flat surface are numerically simulated at a free-stream Mach number of 0.1 by applying compact difference schemes of the 14th order of accuracy. The characteristics of the boundary layer separation zones are investigated at Reynolds numbers ranging from 103 to 107. The computations are based on the nonstationary Navier–Stokes equations supplemented, if necessary, with the formulas of the one-parameter differential SA model of turbulent viscosity. The conditions for pulsing separation zones arising in the boundary layer are determined, and the subsequent transition to a turbulent flow regime is physically justified.

Keywords:

subsonic viscous gas flows flow separation boundary layer instability high-order difference schemes 

Notes

REFERENCES

  1. 1.
    P. K. Chang, Separation of Flow (Pergamon, Oxford, 1970).zbMATHGoogle Scholar
  2. 2.
    K. F. Popovich and G. N. Lavrukhin, Aerodynamics of Reactive Nozzles: Vol. 2: Gas Flow over Bottom Steps (Fizmatlit, Moscow, 2009) [in Russian].Google Scholar
  3. 3.
    B. F. Armaly, F. Durst, J. C. F. Pereira, and B. Schonung, “Experimental and theoretical investigation of backward-facing step flow,” J. Fluid Mech. 127, 473–496 (1983).CrossRefGoogle Scholar
  4. 4.
    T. G. Elizarova, I. S. Kalachinskaya, Yu. V. Sheretov, and E. V. Shil’nikov, “Numerical simulation of separated flows over a backward-facing step,” Prikl. Mat. Inf., No. 14, 85–118 (2003).Google Scholar
  5. 5.
    T. G. Elizarova, P. N. Nikolskii, and J. C. Lengrand, “A new variant of subgrid dissipation for LES method and simulation of laminar-turbulent transition in subsonic gas flows,” Proceedings of the Second Symposium on Hybrid RANS-LES Methods, Corfu, Greece, June 17–18 (2007), pp. 73–74.Google Scholar
  6. 6.
    T. G. Elizarova and P. N. Nikol’skii, “Numerical simulation of the laminar-turbulent transition in backward-facing step flow,” Vestn. Mosk. Univ. Ser. 3: Fiz. Astron., No. 4, 14–17 (2007).Google Scholar
  7. 7.
    S. R. Batenko and V. I. Terekhov, “Effect of dynamic prehistory on aerodynamics of a laminar separated flow in a channel behind a rectangular backward-facing step,” J. Appl. Mech. Tech. Phys. 43 (6), 854–860 (2002).CrossRefGoogle Scholar
  8. 8.
    W. C. Lasher and D. B. Taulbee, “On the computation of turbulent backstep flow,” Int. J. Heat Fluid Flow 13 (1), 30–40 (1992).CrossRefGoogle Scholar
  9. 9.
    Y. Addad, D. Laurence, C. Talotte, and M. C. Jacob, “Large eddy simulation of a forward-backward facing step for acoustic source identification,” Int. J. Heat Fluid Flow 24, 562–571 (2003).CrossRefGoogle Scholar
  10. 10.
    M. Shur, M. Strelets, L. Zaikov, A. Gulyaev, V. Kozlov, and A. Sekundov, “Comparative numerical testing of one- and two-equation turbulence models for flows with separation and reattachment,” AIAA Paper, No. 95-0863 (1995).Google Scholar
  11. 11.
    X. Gloerfelt, C. Bailly, and D. Juve, “Computation of the noise radiated by a subsonic cavity using direct simulation and acoustic analogy,” AIAA Paper, No. 2001-2226 (2001).Google Scholar
  12. 12.
    A. Yu. Golubev and B. M. Efimtsov, “Distinctive features of the pressure fluctuation fields in the vicinities of bulges,” Fluid Dyn. 50 (1), 50–60 (2015).CrossRefGoogle Scholar
  13. 13.
    D. W. Wundrow and M. E. Goldstein, “Effect on a laminar boundary layer of small-amplitude streamwise vorticity in the upstream flow,” J. Fluid Mech. 426, 229–262 (2001).MathSciNetCrossRefGoogle Scholar
  14. 14.
    W. K. Chiu and M. P. Norton, “The receptivity of laminar boundary layer to leading edge vibration,” J. Sound Vib. 141, 143–173 (1990).CrossRefGoogle Scholar
  15. 15.
    P. Luchini, “Reynolds-number independent instability of the boundary layer over a flat surface: Optimal perturbations,” J. Fluid Mech. 404, 289–309 (2002).MathSciNetCrossRefGoogle Scholar
  16. 16.
    Y. Bandadi and A. Sbaibi, “Subsonic boundary layer receptivity to free stream acoustic perturbations,” 13th Congress on Mechanics, Meknes, Morocco, April 11–14, 2017.Google Scholar
  17. 17.
    R. A. Heinrich, M. Choudhari, and E. J. Kerschen, “A comparison of boundary layer receptivity mechanisms,” AIAA Paper, No. 88-3758 (1988).Google Scholar
  18. 18.
    L. G. Loitsyanskii, Mechanics of Liquids and Gases (Nauka, Moscow, 1987; Begell House, New York, 1996).Google Scholar
  19. 19.
    P. R. Spalart and S. R. Allmaras, “A one-equation turbulence model for aerodynamic flows,” AIAA Paper, No. 92-0439 (1992).Google Scholar
  20. 20.
    J. L. Steger, “Implicit finite-difference simulation of flow about arbitrary two-dimensional geometries,” AIAA J. 16, 678–685 (1978).CrossRefGoogle Scholar
  21. 21.
    A. D. Savel’ev, “Multioperator representation of composite compact schemes,” Comput. Math. Math. Phys. 54 (10), 1522–1535 (2014).MathSciNetCrossRefGoogle Scholar
  22. 22.
    G. M. Bam-Zelikovich, “Computation of boundary layer separation,” Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, No. 12, 68–85 (1954).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Dorodnicyn Computing Center, Federal Research Center “Computer Science and Control,” Russian Academy of SciencesMoscowRussia

Personalised recommendations