Computational Mathematics and Mathematical Physics

, Volume 58, Issue 12, pp 2043–2052 | Cite as

On the Feasibility of Detecting Thin Conductive Layers from Field Measurements on the Surface of a Medium

  • A. S. BarashkovEmail author


A two-dimensional environment in which the fields are described by the Helmholtz equation is considered. A linearized formulation of the problem of the recovery of medium parameters (an inverse problem for the Helmholtz equation) is studied. The conditions for the unique detection of thin conductive layers are established. Examples of nonuniqueness of the solution of the inverse problem from information that initially seemed redundant even for a unique solution are given.


two-dimensional medium inverse problem for the Helmholtz equation linearized formulation infinite strip uniqueness theorems examples of the nonunique recovery of medium parameters Fourier transform 



  1. 1.
    M. N. Berdichevsky and V. I. Dmitriev, Models and Methods of Magnetotellurics (Springer, Berlin, 2008; Nauchnyi Mir, Moscow, 2009).Google Scholar
  2. 2.
    A. N. Tikhonov, “Mathematical basis of the theory of electromagnetic soundings,” Comput. Math. Math. Phys. 5 (3), 207–211 (1965).CrossRefGoogle Scholar
  3. 3.
    M. G. Krein, “On inverse problems for a nonhomogeneous string,” Dokl. Akad. Nauk SSSR 82 (5), 669–672 (1952).Google Scholar
  4. 4.
    F. V. Atkinson, Discrete and Continuous Boundary Problems (Academic, New York, 1964).zbMATHGoogle Scholar
  5. 5.
    P. S. Martyshko and A. L. Rublev, “On the solution of a three-dimensional inverse problem for the Helmholtz equation,” Ross. Geofiz. Zh., Nos. 13–14, 98–110 (1999).Google Scholar
  6. 6.
    A. S. Barashkov and A. A. Nebera, “Cases of uniform convergence of the iterative asymptotic method for solving multidimensional inverse problems,” Differ. Equations 51 (4), 558–562 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    A. S. Barashkov, Small Parameter Method in Multidimensional Inverse Problems (VSP, Utrecht, 1998), pp. 18–20.zbMATHGoogle Scholar
  8. 8.
    A. V. Goncharskii, S. Yu. Romanov, and S. A. Kharchenko, “Inverse problem of acoustic diagnostics for three-dimensional media,” Vychisl. Metody Program. 7 (1), 117–126 (2006).Google Scholar
  9. 9.
    M. V. Klibanov and V. G. Romanov, “Two reconstruction procedures for a 3D phaseless inverse scattering problem for the generalized Helmholtz equation,” Inverse Probl. 32 (2), 015005 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    V. G. Romanov, Some Inverse Problems for Hyperbolic Equations (Nauka, Novosibirsk, 1972) [in Russian].Google Scholar
  11. 11.
    V. S. Vladimirov, Generalized Functions in Mathematical Physics (Nauka, Moscow, 1979; Mir, Moscow, 1979).Google Scholar
  12. 12.
    I. A. Shishmarev, Introduction to the Theory of Elliptic Equations (Mosk. Gos. Univ., Moscow, 1979) [in Russian].Google Scholar
  13. 13.
    L. Elsgolts, Differential Equations and the Calculus of Variations (Mir, Moscow, 1970; Nauka, Moscow, 1969).Google Scholar
  14. 14.
    S. Bochner, Lectures on Fourier Integrals (Princeton Univ. Press, Princeton, 1959).zbMATHGoogle Scholar
  15. 15.
    I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Nauka, Moscow, 1971; Academic, New York, 1980).Google Scholar
  16. 16.
    A. S. Barashkov, “Asymptotic forms of the solution of the inverse problem for the Helmholtz equation,” USSR Comput. Math. Math. Phys. 28 (6), 152–158 (1988).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    A. S. Barashkov, Mathematics: Higher Education (AST, Moscow, 2011) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.National Research University MPEIMoscowRussia

Personalised recommendations